The LHCb Trigger and its upgrade

Past Performance: The Immediate Future: The Upgrade: Run 1 : - 2012 Run 2 : 2015 - 2018 Run 3 : 2020 -

The LHCb Experiment

- Single-arm spectrometer (2 < η < 5) @ LHC
- Run 1 (2010-2012): $L = 4 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ (2x design),
 - ~1.6 visible interactions/crossing
 - \Rightarrow 30 kHz bb, 600 kHz cc within the acceptance
- Precision flavour physics: CP violation, rare decays, ...

An LHCb Event

Typical Signatures

• B mass ~5.28 GeV/c², daughter P_T ~1 GeV/c

- $\tau_B \sim 1.6$ ps, flight distance ~ 1 cm
- Important signature: detached muons from from eg. B→J/ψX, J/ψ→μ⁺μ⁻
- D^0 mass ~1.86 GeV/c², appreciable daughter P_T
- $\tau_D \sim 0.4$ ps, flight distance ~ 0.4 cm
- Also produced as 'secondary' charm from B decays.

Trigger Strategy:

- Inclusive triggers on muons, displaced vertices with high PT tracks
- Exclusive triggers for anything else

2011-2012 trigger

Three stage architecture:

- Level 0 (L0) near detector hardware, fixed 4 µs latency
- Higher Level Trigger (HLT1 and HLT2) — software running on 29,000 cores

JINST 8 (2013) P04022, and arXiv:1310.8544

L0 trigger: Muons

Reconstruct muon segments

- ΔP/P ~ 20 %
- L0 SingleMuon:
 - P_T > 1.76 GeV/c

L0 DiMuon:

• $P_{T1}xP_{T2} > (1.6 \text{ GeV/c})^2$

Typically over 90% efficient

L0 trigger: Calorimeter

Select hadrons, electrons and photons with large E_{T}

L0 hadron:

- E_T > 3.6 GeV
- Rate ~490 kHz
- L0 electron / photon
 - SPD+Preshower discriminate between electrons and photons
 - E_T > 3 GeV
 - Rate ~ 150 kHz
 - ~80 % efficient for $B \rightarrow X\gamma$

Total L0 Rate: ~1 MHz

2012: Deferred Trigger

- LHC "only" delivers collisions ~35% of the time
 - trigger farm idle ~65% of the time!

	v
Mode	% of scheduled time
Access	14%
Setup	28%
Beam in	15%
Ramp and squeeze	8%
Stable beams	36%

Table 5. LHC availability 2012

2012: Deferred Trigger

- LHC "only" delivers collisions ~35% of the time
 - trigger farm idle ~65% of the time!
- "Over commit" CPU resources, buffer overflow to local disk & catch up in between fills
 - 20% of L0 triggers are "deferred"
 - 25% extra CPU capacity!
 - allows decrease of Hlt2 tracking thresholds P_T> 500 MeV/c→ P_T>300 MeV/c

2012: Deferred Trigger

 HLT1 adds tracking in VErtex LOcator (VELO) and primary vertex reconstruction

- VELO tracks, either matched to muon hits, or with large IP are extended through the magnet
 - P_T dependent search windows:

track		μ	$\mu~\mu$	other
min. p _T	GeV]	1.0	0.5	1.6

HLT1: Performance

- Muon lines
 - Track matched to muon hits
 - Either high P_T or large IP
 - ~ 14 kHz
- Inclusive lines
 - Single track with large IP and high P_{T}
 - ~56 kHz
- Total ~ 70 kHz
 - Tuned to maximise HLT2 CPU
 usage

HLT2: Full Reconstruction

- Tuned versions of offline reconstruction algorithms
 - eg. P_T > 300 MeV/c
- Combination of inclusive and exclusive trigger decisions
- Flexible software environment
 - supports eg. dedicated MVA-based selections

Topological N-body Triggers

• Utilizes excellent vertex and momentum resolution to compute:

 $m_{\rm corr} \equiv \sqrt{m_{\rm inv}^2 + |P_{T\,{\rm miss}}|^2} + |P_{T\,{\rm miss}}|$

Example: 4-body B decay, minv and mcorr for 2, 3 and 4 body selections

Topological N-body Triggers

• Utilizes excellent vertex and momentum resolution to compute:

 $m_{\rm corr} \equiv \sqrt{m_{\rm inv}^2 + |P_{T\,{\rm miss}}|^2} + |P_{T\,{\rm miss}}|$

- Uses a dedicated "Bonzai" Boosted Decision Tree [JINST 8 (2013) P02013] with
 - P_T , $IP\chi^2$, $FD\chi^2$, m_{inv} , m_{corr}
- Capable of filling its allotted bandwidth with ~100% pure generic bb events

Charm Triggers

- Charm important part of LHCb physics:
 - Observation of D⁰-D⁰bar oscillations
 [PRL 110 (2013) 101802]
 - Measurement of D⁰-D⁰bar mixing parameters [PRL 111 (2013) 251801]
- High production rate, 600 kHz in 2012, requires *exclusive* selections.
- Exception: $D^{*+} \rightarrow D^0 \pi^+$
 - use D*-D⁰ mass difference to select
 D⁰→h⁺h⁻
 - Cabibbo favored (D⁰→K⁻π⁺) rate is 300x suppressed rate (D⁰→π⁻K⁺)

Run1 Performance

• Trigger efficiencies for selected channels

	Hadronic		Dimuon	Radiative
Mode	$D \rightarrow hhh$	$B{\rightarrow}\mathrm{hh}$	${\sf B}^+ ightarrow {\sf J}/\psi {\sf K}^+$	$B^0 \rightarrow K^* \gamma$
ϵ (L0) [%]	27	62	93	85
ϵ (HLT L0) [%]	42	85	92	67
ϵ (HLT × L0) [%]	11	52	84	57

• Very pure samples after offline selection

Run2 Prospects

- *O*inelastic : x 1.15
- σ_{bb}: x1.6
- multiplicity: x1.2
- Bunch spacing: 50 ns \rightarrow 25 ns
 - pileup: / 2
 - but still 1 MHz L0 limit!

Run2 Prospects

Changes in architecture:

- 'Split' HIt1 and HIt2
 - Buffer data after HLT1, perform alignment & calibration, *prior* to Hlt2
 - Hlt2 now very close to offline reconstruction, *including* RICH PID
 - RICH PID allows pre-scaling of Cabibbo favored charm, whilst keeping the full suppressed rate.
- Increased output rate, add 'parking'
- Investigate analysis directly on HLT output only (2.5 kHz without offline reconstruction)

The LHCb Upgrade

Technical Design Report

CERVILACE 2014-00 LIKE TOR 13 LIKE TOR 13

Technical Design Report

UPGRADE CHCb Trigger and Online

Technical Design Report

The LHCb Upgrade

• After LS2, LHCb will run at 5x higher luminosity: $L = 2 \cdot 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$

- Trackers: strawtubes → scintillating fibers + silicon microstrips
- RICH: replace photon detectors; CALO: SPD, PRS removed; MUON: M1 removed

Upgrade Environment

• Average pp collisions per bunch crossing: 2.0→7.6

Run I	Per event	with vertex in VELO	Rate [GB/s]	
b-hadrons	0.0258 ± 0.0004	0.0029 ± 0.0001	0.9	
c-hadrons	0.297 ± 0.001	0.0422 ± 0.0005	3.3	
light, long-lived hadrons	8.04 ± 0.01	0.511 ± 0.002	1.1	
Upgrade	Per event	with vertex in VELO	Rate [GB/s]	
Upgrade b-hadrons	Per event 0.1572 ± 0.0004	with vertex in VELO 0.01874 ± 0.0001	Rate [GB/s] 27	
Upgrade b-hadrons c-hadrons	Per event 0.1572 ± 0.0004 1.422 ± 0.001	with vertex in VELO 0.01874 ± 0.0001 0.2138 ± 0.0005	Rate [GB/s] 27 80	

• Challenge: must go beyond rejecting background —- classify signal, and choose wisely...

• P_T and IP alone not sufficient to reduce rate: requires *all* available detector information...

Triggerless Readout @ 40 MHz

- At L= 2 ·10³³cm⁻²s⁻¹, the 1 MHz readout limit becomes a bottleneck
 - Signal no longer easily identifiable
- Readout upgraded to 40 MHz
- → Ship *every* visible pp interaction
 (30 MHz) to a CPU farm running the Higher Level Trigger

 Low-Level Trigger (LLT) only as 'handbrake' during commissioning

Triggerless Readout @ 40 MHz

- At L= 2 ·10³³cm⁻²s⁻¹, the 1 MHz readout limit becomes a bottleneck
 - Signal no longer easily identifiable
- Readout upgraded to 40 MHz
- → Ship *every* visible pp interaction
 (30 MHz) to a CPU farm running the Higher Level Trigger

 Low-Level Trigger (LLT) only as 'handbrake' during commissioning

Upgrade Trigger

Robustness of benchmarks

- Timing of tracking studied at three working points:
 - L = 1.10^{33} cm⁻²s⁻¹ [v=3.8]
 - $L = 2 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1} [v = 7.6, \text{ nominal}]$
 - L = $3 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1} [v = 11.4]$
- Several optimizations can be made to improve timing and efficiency for different working points
 - Global Event Cut (GEC) on event multiplicity also used in Run 1:
 - "Crowded" events contain more background, use disproportionate amount of resources

Upgrade Topological Trigger

- Same principle as Run 1 : preselect displaced tracks with Σ P_T, followed by BBDT
- Timing: <0.1 ms (*)
- At 25-50 kHz output rate, large efficiency gains over Run 1
 - red: run 1 efficiency
 - green: 2x run 1 efficiency
- LHCb-PUB-2014-031

Upgrade Sensitivities

- Implications of LHCb measurements and future prospects [EPJC 73 (2013) 2373]
- LHCb will need to trigger on a very broad range of physics processes:

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50 {\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 138	0.025	0.008	~ 0.003
	$2\beta_s \ (B_s^0 \to J/\psi \ f_0(980))$	0.17 214	0.045	0.014	~ 0.01
	$a_{ m sl}^s$	6.4×10^{-3} 43	$0.6 imes 10^{-3}$	0.2×10^{-3}	0.03×10^{-3}
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	_	0.17	0.03	0.02
penguins	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$		0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_S)$	0.17 43	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	_	0.09	0.02	< 0.01
currents	$\tau^{\rm eff}(B^0_s \to \phi \gamma) / \tau_{B^0_s}$		5~%	1%	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 67	0.025	0.008	0.02
penguins	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25% 67	6 %	2%	7~%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV}^2/c^4)$	0.25 76	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% 85	8 %	2.5~%	$\sim 10 \%$
Higgs	$\mathcal{B}(B^0_s o \mu^+ \mu^-)$	1.5×10^{-9} [13]	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguins	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$		$\sim 100 \%$	$\sim 35\%$	$\sim 5~\%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 10 - 12^{\circ}$ 244, 258	4°	0.9°	negligible
triangle	$\gamma \ (B_s^0 \to D_s K)$		11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K_{\rm s}^0)$	0.8° [43]	0.6°	0.2°	negligible
Charm	A_{Γ}	2.3×10^{-3} 43	0.40×10^{-3}	0.07×10^{-3}	_
CP violation	$\Delta \mathcal{A}_{CP}$	2.1×10^{-3} 18	0.65×10^{-3}	0.12×10^{-3}	_

Summary

- During Run 1, LHCb trigger covered a wide range of requirements in a challenging environment
 - high efficiency for the rarest B decay
 - high purity for the largest charm samples
- Run 2 will introduce calibration and alignment 'in between' HIt1 and HIt2
- The upgrade trigger builds on the Run 1 experience:
 - Readout at full collision rate
 - Full software trigger at 30 MHz
 - Expect doubling of many signal efficiencies

Event Building @ 40 MHz

- 32 Tbit/s
- "All data to the surface"
- Decouple front-end electronics from event builder network
 - Frontend→GBT→PCIe
 - GBT: Rad-hard, integrated into front-end, so no commodity solution possible...
- Buffering in PC memory

Event Building @ 40 MHz

- "COTS" as soon as possible
- O(500) servers for event building
- "Data Center" ("thin" switch, Infiniband/Ethernet/ ...) instead of "Telecom" (ATCA, "fat" switch)
- Event Filter: O(1000) servers

Event Filter (HLT) Network

