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Statistical analysis tools for the Higgs discovery and beyond 



What do you want to know? 

• Physics questions we have… 

– Does the (SM) Higgs boson exist? 

– What is its production cross-section? 

– What is its boson mass? 

 

• Statistical tests construct 

probabilistic statements: 

p(theo|data), or p(data|theo) 

– Hypothesis testing (discovery) 

– (Confidence) intervals 

Measurements & uncertainties 

 

• Result: Decision based on tests 
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“As a layman I would now say: I think we have it” 



All experimental results start with the formulation of a 

model 

• Examples of HEP physics models being tested 

– SM with m(top)=172,173,174 GeV  Measurement top quark mass 

– SM with/without Higgs boson  Discovery of Higgs boson 

– SM with composite fermions/Higgs  Measurement of Higgs coupling properties 

• Via chain of physics simulation, showering MC, detector simulation 

and analysis software, a physics model is reduced to a statistical 

model 
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The HEP analysis workflow illustrated 
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P(m4l|SM[mH]) 

Observed m4l 



All experimental results start with the formulation of a 

model 

• Examples of HEP physics models being tested 

– SM with m(top)=172,173,174 GeV  Measurement top quark mass 

– SM with/without Higgs boson  Discovery of Higgs boson 

– SM with composite fermions/Higgs  Measurement of Higgs coupling properties 

• Via chain of physics simulation, showering MC, detector simulation and 

analysis software, a physics model is reduced to a statistical model 

• A statistical model defines p(data|theory) for all observable outcomes 

– Example of a statistical model for a counting measurement with a known background 
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s=0 

s=5 

s=10 
s=15 NB: b is a constant in this example 

Definition: the Likelihood  

is P(observed data|theory) 
Nobs 



Everything starts with the likelihood 

• All fundamental statistical procedures are based  

on the likelihood function as ‘description of the measurement’ 

 

Frequentist statistics  

Confidence interval on s Posterior on s s = x ± y 

Bayesian statistics  Maximum Likelihood 

Nobs e.g. L(15|s=0) 

e.g. L(15|s=10) 



Everything starts with the likelihood 

Wouter Verkerke, NIKHEF 

Frequentist statistics  

Confidence interval 

or p-value 

Posterior on s 

or Bayes factor 

s = x ± y 

Bayesian statistics  Maximum Likelihood 

lm (Nobs ) =
L(N | m)

L(N | m̂)
P(m)µL(x |m) ×p(m)
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How is Higgs discovery different from a simple fit? 
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Higgs combination model Gaussian + polynomial 

ROOT TH1 ROOT TF1 

μ = 5.3 ± 1.7 

“inside ROOT” 

ML estimation of 

parameters μ,θ using MINUIT  

(MIGRAD, HESSE, MINOS) 



ML estimation of 

parameters μ,θ using MINUIT  

(MIGRAD, HESSE, MINOS) 

How is Higgs discovery different from a simple fit? 
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Higgs combination model Gaussian + polynomial 

ROOT TH1 ROOT TF1 

μ = 5.3 ± 1.7 

“inside ROOT” 

Likelihood Model 

orders of magnitude more 

complicated. Describes 

    - O(100) signal distributions 

    - O(100) control sample distr. 

    - O(1000) parameters 

                    representing  

                    syst. uncertainties 

Frequentist confidence interval 

construction and/or p-value 

calculation not available 

as ‘ready-to-run’ algorithm  

in ROOT 



How is Higgs discovery different from a simple fit? 
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Higgs combination model Gaussian + polynomial 

ROOT TH1 ROOT TF1 

μ = 5.3 ± 1.7 

“inside ROOT” 

Model Building phase (formulation of L(x|H) 

ML estimation of 

parameters μ,θ using MINUIT  

(MIGRAD, HESSE, MINOS) 



ML estimation of 

parameters μ,θ using MINUIT  

(MIGRAD, HESSE, MINOS) 

How is Higgs discovery different from a simple fit? 
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Higgs combination model Gaussian + polynomial 

ROOT TH1 ROOT TF1 

μ = 5.3 ± 1.7 

“inside ROOT” 

Model Usage phase (use L(x|H) to make statement on H) 



ML estimation of 

parameters μ,θ using MINUIT  

(MIGRAD, HESSE, MINOS) 

How is Higgs discovery different from a simple fit? 
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Higgs combination model Gaussian + polynomial 

ROOT TH1 ROOT TF1 

μ = 5.3 ± 1.7 

“inside ROOT” 

Design goal: 

Separate building of Likelihood model as much as possible 

from statistical analysis using the Likelihood model 

 

 More modular software design 

 ‘Plug-and-play with statistical techniques 

 Factorizes work in collaborative effort  



The idea behind the design of RooFit/RooStats/HistFactory 

• Modularity, Generality and flexibility 

• Step 1 – Construct the likelihood function L(x|p) 

 

 

 

• Step 2 – Statistical tests on parameter of interest p  

 

Procedure can be Bayesian, Frequentist, or Hybrid),  

but always based on L(x|p) 

 

 

• Steps 1 and 2 are conceptually separated,  

and in Roo* suit also implemented separately. 
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RooFit,  or  RooFit+HistFactory 

RooStats 



The idea behind the design of RooFit/RooStats/HistFactory 

• Steps 1 and 2 can be ‘physically’ separated (in time, or user) 

• Step 1 – Construct the likelihood function L(x|p) 

 

 

 

 

 

 

 

 

• Step 2 – Statistical tests on parameter of interest p  
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RooFit,  or  RooFit+HistFactory 

RooStats 

RooWorkspace 

Complete description 

of likelihood model, 

persistable in ROOT file 

(RooFit pdf function) 

 

Allows full introspection 

and a-posteriori editing 

 



The benefits of modularity 

• Perform different statistical test on exactly the same model 
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RooFit,  or  RooFit+HistFactory 

RooStats 

(Frequentist 

with toys)  

RooWorkspace 

RooStats 

(Frequentist 

asymptotic)  

RooStats 

Bayesian 

MCMC 

“Simple fit” 

 (ML Fit with 
HESSE or 
MINOS) 



RooFit 

WV + D. Kirkby - 1999 



RooFit – Focus: coding a probability density function 

• Focus on one practical aspect of many data analysis in HEP:  
How do you formulate your p.d.f. in ROOT  

– For ‘simple’ problems (gauss, polynomial) this is easy 

– But if you want to do unbinned ML fits, use non-trivial functions, or work with 
multidimensional functions you quickly find that you need some tools to help 
you 

 

 

 

 

 

 

 

 

 

• The RooFit project started in 1999 for data modeling needs for 
BaBar collaboration initially, publicly available in ROOT since 
2003 



RooFit core design philosophy 

• Mathematical objects are represented as C++ objects 

 

variable RooRealVar 

function RooAbsReal 

PDF RooAbsPdf 

space point RooArgSet 

list of space points RooAbsData 

integral RooRealIntegral 

RooFit class Mathematical concept 
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Data modeling – Constructing composite objects 

• Straightforward correlation between mathematical 

representation of formula and RooFit code 

RooRealVar x 

RooRealVar s 

RooFormulaVar sqrts 

RooGaussian g 

 RooRealVar x(“x”,”x”,-10,10) ; 

 RooRealVar m(“m”,”mean”,0) ; 

 RooRealVar s(“s”,”sigma”,2,0,10) ; 

 RooFormulaVar sqrts(“sqrts”,”sqrt(s)”,s) ; 

 RooGaussian g(“g”,”gauss”,x,m,sqrts) ; 

Math 

RooFit 
diagram 

RooFit 
code 

RooRealVar m 

),,( smxgauss

 

 

 

 

 



RooFit core design philosophy  

• A special container class owns all objects that together build a 

likelihood function 

RooRealVar x RooRealVar m RooRealVar s 

RooGaussian g 

RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar m(“m”,”y”,0,-10,10) ; 

RooRealVar s(“s”,”z”,3,0.1,10) ; 

RooGaussian g(“g”,”g”,x,m,s) ; 
RooWorkspace w(“w”) ; 

w.import(g) ; 

Math 

RooFit 
diagram 

RooFit 
code 

RooWorkspace (keeps all parts together) 

Gauss(x,μ,σ) 
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New feature for LHC 



Populating a workspace the easy way – “the factory” 

• The factory allows to fill a workspace with pdfs and variables 

using a simplified scripting language 

RooRealVar x RooRealVar y RooRealVar z 

RooAbsReal f 

RooWorkspace w(“w”) ; 

w.factory(“Gaussian::g(x[-10,10],m[-10,10],z[3,0.1,10])”); 

Math 

RooFit 
diagram 

RooFit 
code 

RooWorkspace 

Gauss(x,μ,σ) 
New feature for LHC 
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Model building – (Re)using standard components 

• RooFit provides a collection of compiled standard PDF classes 

RooArgusBG 

RooPolynomial 

RooBMixDecay 

RooHistPdf 

RooGaussian 

Basic 
Gaussian, Exponential, Polynomial,… 
Chebychev polynomial 

Physics inspired 
ARGUS,Crystal Ball,  
Breit-Wigner, Voigtian, 
B/D-Decay,…. 

Non-parametric 
Histogram, KEYS 

Easy to extend the library: each p.d.f. is a separate C++ class 
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Model building – (Re)using standard components 

• Library p.d.f.s can be adjusted on the fly. 

– Just plug in any function expression you like as input variable 

– Works universally, even for classes you write yourself 

 

 

 

 

 

 

 

 

 

 

• Maximum flexibility of library shapes keeps library small 

g(x,y;a0,a1,s) 

g(x;m,s) m(y;a0,a1) 

RooPolyVar  m(“m”,y,RooArgList(a0,a1)) ; 
RooGaussian g(“g”,”gauss”,x,m,s) ; 



From empirical probability models to simulation-based 

models 

• Large difference between B-physics and LHC hadron physics is 

that for the latter distributions usually don’t follow simple 

analytical shapes 

 

 

 

 

 

 

 

• But concept of simulation-driven template models can also 

extent to systematic uncertainties. Instead of empirically chosen 

‘nuisance parameters’ (e.g. polynomial coefs) construct degrees 

of freedom that correspond to known systematic uncertainties   
Wouter Verkerke, NIKHEF  

Unbinned analytical  

probability model 

(Geant) Simulation-driven 

binned template model  



The HEP analysis workflow illustrated 
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prob(data|SM) 

P(m4l|SM[mH]) 
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Hard Theory 

uncertainties 

Soft Theory 

uncertainties 

Detector 

modelling  

uncertainties 



Modeling of shape systematics in the likelihood 

• Effect of any systematic uncertainty that affects the shape of a 

distribution can in principle be obtained from MC simulation 

chain 

– Obtain histogram templates for distributions at ‘+1σ’ and ‘-1σ’  

settings of systematic effect 

 

 

 

 

 

 

 

 

• Challenge: construct an empirical response function based on 

the interpolation of the shapes of these three templates.  

Wouter Verkerke, NIKHEF 

‘-1σ’ ‘nominal’ ‘+1σ’ 

“Jet Energy Scale”  



Need to interpolate between template models 

• Need to define ‘morphing’ algorithm to define  

distribution s(x) for each value of α 
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s(x,α=-1) 

s(x,α=0) 

s(x,α=+1) 
s(x)|α=-1 

s(x)|α=0 

s(x)|α=+1 



Visualization of bin-by-bin linear interpolation of distribution 
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x α 



Example 2 : binned L with syst 

• Example of template morphing 

systematic in a binned likelihood 
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L(N |a, s -, s 0, s+) = P(Ni | si(a, si
-, si

0, si
+)

bins

Õ ) ×G(0 |a,1)

si(a,...) =
si

0 +a × (si
+ - si

0 ) "a > 0

si
0 +a × (si

0 - si
-) "a < 0

ì

í
ï
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// Import template histograms in workspace 

 w.import(hs_0,hs_p,hs_m) ; 

 

 // Construct template models from histograms 

 w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ; 

 w.factory(“HistFunc::s_p(x,hs_p)”) ; 

 w.factory(“HistFunc::s_m(x,hs_m)”) ; 

 

 // Construct morphing model 

 w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ;  

 

 // Construct full model 

 w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]),Gaussian(0,alpha,1))”) ; 



Other uncertainties in MC shapes – finite MC statistics  

• In practice, MC distributions used for template fits have finite 

statistics. 

 

 

 

 

 

 

 

 

 

 

 

 

• Limited MC statistics represent an uncertainty on your model  

 how to model this effect in the Likelihood? 
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Other uncertainties in MC shapes – finite MC statistics  

• Modeling MC uncertainties: each MC bin has a Poisson uncertainty 

• Thus, apply usual ‘systematics modeling’ prescription.   

• For a single bin – exactly like original counting measurement  

Lbin-i(m, si,bi ) = Poisson(Ni | m × si +bi )

×Poisson(Ni
MC-s | si )

×Poisson(Ni
MC-b | bi )

Fixed signal, bkg MC prediction 

Signal, bkg  

MC nuisance params 

Subsidiary measurement for signal MC 

(‘measures’ MC prediction si with Poisson uncertainty) 



Code example – Beeston-Barlow 

• Beeston-Barlow-(lite) modeling 

of MC statistical uncertainties 
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L(N |g ) = P(Ni |gi(si +bi ))
bins

Õ P(si +bi |g i(si +bi
bins

Õ ))

// Import template histogram in workspace 

 w.import(hs) ; 
 

// Construct parametric template models from histograms 
// implicitly creates vector of gamma parameters 

 w.factory(“ParamHistFunc::s(hs)”) ; 

 

 // Product of subsidiary measurement 

 w.factory(“HistConstraint::subs(s)”) ;  

 

 // Construct full model 

 w.factory(“PROD::model(s,subs)”) ; 



Code example: BB + morphing 

• Template morphing model 

with Beeston-Barlow-lite 

MC statistical uncertainties 

L(N | s,b) = P(Ni |g i ×[si(a, si
-, si

0, si
+)+bi ])

bins

Õ P(si +bi |gi ×[si +bi ]
bins

Õ )G(0 |a,1)

si(a,...) =
si
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+ - si

0 ) "a > 0

si
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-) "a < 0
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í
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 // Construct parametric template morphing signal model 

 w.factory(“ParamHistFunc::s_p(hs_p)”) ; 

 w.factory(“HistFunc::s_m(x,hs_m)”) ; 

 w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ; 

 w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ;  
 

 // Construct parametric background model (sharing gamma’s with s_p) 

 w.factory(“ParamHistFunc::bkg(hb,s_p)”) ; 
 

 // Construct full model with BB-lite MC stats modeling 

 w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]), 
            HistConstraint({s_0,bkg}),Gaussian(0,alpha,1))”) ; 



The structure of an (Higgs) profile likelihood function 

• Likelihood describing Higgs samples have following structure 

Wouter Verkerke, NIKHEF  

Signal region 1 

Signal region 2 

Control region 1 Control region 2 

‘Constraint θ1’ ‘Constraint θn’ 

‘Constraint θn’ Strength of 

systematic  

uncertainties 



The structure of an (Higgs) profile likelihood function 

• A simultaneous fit of physics samples and (simplified) performance 

measurements 
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Signal region 1 

Signal region 2 

Control region 1 Control region 2 

‘Simplified Likelihood of  

a measurement related 

to systematic uncertainties’ 

‘Subsidiary  

measurement 1’ 

‘Jet Energy scale’ 

‘Subsidiary  

measurement 2’ 

B-tagging eff 

‘Subsidiary  

measurement n’ 

Factorization scale 



The Workspace 



The workspace 

• The workspace concept has revolutionized the way people share 
and combine analysis 

– Completely factorizes process of building and using likelihood functions 

– You can give somebody an analytical likelihood of a (potentially very complex) 
physics analysis in a way to the easy-to-use, provides introspection, and is easy 
to modify. 
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RooWorkspace 

RooWorkspace w(“w”) ; 

w.import(sum) ; 

w.writeToFile(“model.root”) ; 

model.root 



Using a workspace  
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RooWorkspace 

// Resurrect model and data 

TFile f(“model.root”) ; 

RooWorkspace* w = f.Get(“w”) ; 

RooAbsPdf* model = w->pdf(“sum”) ; 

RooAbsData* data = w->data(“xxx”) ; 

 

// Use model and data 

model->fitTo(*data) ; 

RooPlot* frame =  

         w->var(“dt”)->frame() ; 

data->plotOn(frame) ; 

model->plotOn(frame) ; 



The idea behind the design of RooFit/RooStats/HistFactory 

• Step 1 – Construct the likelihood function L(x|p) 

 

 

 

 

 

 

 

 

 

 

• Step 2 – Statistical tests on parameter of interest p  

 

 

 

Wouter Verkerke, NIKHEF  

RooFit,  or  RooFit+HistFactory 

RooStats 

RooWorkspace 

Complete description 

of likelihood model, 

persistable in ROOT file 

(RooFit pdf function) 

Allows full introspection 

and a-posteriori editing 

 

RooWorkspace w(“w”) ; 

w.factory(“Gaussian::sig(x[-10,10],m[0],s[1])”) ; 

w.factory(“Chebychev::bkg(x,a1[-1,1])”) ; 

w.factory(“SUM::model(fsig[0,1]*sig,bkg)”) ; 

w.writeToFile(“L.root”) ; 

RooWorkspace* w=TFile::Open(“L.root”)->Get(“w”) ; 

RooAbsPdf* model = w->pdf(“model”) ; 

pdf->fitTo(data) ; 



Example RooFit component model for realistic Higgs 

analysis 

variables 

function objects 

Graphical illustration of function 

components that call each other 

 

Likelihood model describing the  

ZZ invariant mass distribution 

including all possible systematic  

uncertainties 

RooFit  
workspace 



Analysis chain identical for highly complex (Higgs) 

models 

• Step 1 – Construct the likelihood function L(x|p) 

 

 

 

 

 

 

 

 

 

 

• Step 2 – Statistical tests on parameter of interest p  
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RooStats 

RooWorkspace 

Complete description 

of likelihood model, 

persistable in ROOT file 

(RooFit pdf function) 

Allows full introspection 

and a-posteriori editing 

 

RooWorkspace* w=TFile::Open(“L.root”)->Get(“w”) ; 

RooAbsPdf* model = w->pdf(“model”) ; 

pdf->fitTo(data, 

           GlobalObservables(w->set(“MC_GlObs”), 

           Constrain(*w->st(“MC_NuisParams”) ; 



Workspaces power collaborative statistical modelling 

• Ability to persist complete(*) Likelihood models  

has profound implications for HEP analysis workflow 

– (*) Describing signal regions, control regions, and including nuisance 

parameters for all systematic uncertainties) 

• Anyone with ROOT (and one ROOT file with a workspace)  

can re-run any entire statistical analysis out-of-the-box 

– About 5 lines of code are needed 

– Including estimate of systematic uncertainties 

• Unprecedented new possibilities for cross-checking results,  

in-depth checks of structure of analysis 

– Trivial to run variants of analysis (what if ‘Jet Energy Scale uncertainty’ is 

7% instead of 4%). Just change number and rerun. 

– But can also make structural changes a posteri. For example, rerun with 

assumption that JES uncertainty in forward and barrel region of detector are 

100% correlated instead of being uncorrelated. 
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Collaborative statistical modelling 

• As an experiment, you can effectively build a library of 

measurements, of which the full likelihood model is  

preserved for later use 

– Already done now, experiments have such libraries of workspace files, 

– Archived in AFS directories, or even in SVN…. 

– Version control of SVN, or numbering scheme in directories allows for easy 

validation and debugging as new features are added 

 

• Building of combined likelihood models greatly simplified.  

– Start from persisted components. No need to (re)build input components. 

– No need to know how individual components were built, or are internally 

structured. Just need to know meaning of parameters.  

– Combinations can be produced (much) later than original analyses. 

– Even analyses that were never originally intended to be combined with 

anything else can be included in joint likelihoods at a later time 
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Higgs discovery strategy – add everything together 

HZZllll Hττ HWWμνjj 

+… 

Assume SM rates 

L(m,q ) = LH®WW (mWW ,q ) ×LH®gg (mgg ,q ) ×LH®ZZ (mZZ,q ) ×…

Dedicated physics working 

groups  

define search for each of the 

major Higgs decay channels  

(HWW, HZZ, Hττ etc). 

 

Output is physics paper or note,  

and a RooFit workspace with the  

full likelihood function 

A small dedicated team of specialists builds a combined likelihood from the inputs.  

Major discussion point: naming of parameters, choice of parameters for systematic  

uncertainties (a physics issue, largely) 



The benefits of modularity 

• Technically very straightforward to combine measurements  
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RooFit,  or  RooFit+HistFactory 

RooStats 

RooWorkspace RooWorkspace 

RooWorkspace 

Higgs channel 1 Higgs channel 2 

Combiner 

RooStats 

Higgs 

Combination 

Lightweight 

software tool 

using RooFit 

editor tools 

(~500 LOC) 

Insertion of  

combination  

step does not  

modify workflow  

before/after  

combination step 



Workspace persistence of really complex models works too! 

F(x,p) 

x p 

Atlas Higgs combination model (23.000 functions, 1600 

parameters) 

Model has ~23.000 function objects, ~1600 parameters 

Reading/writing of full model takes ~4 seconds 

ROOT file with workspace is ~6 Mb 

 



With these combined models the Higgs discovery plots were produced… 
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LATLAS(μ,θ) = 

Neyman construction 

with profile likelihood  

ratio test 

CMS 



More benefits of modularity 

• Technically very straightforward to reparametrize measurements  
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RooFit,  or  RooFit+HistFactory 

RooStats 

RooWorkspace 

RooWorkspace 

Standard  

Higgs combination 

Reparametrize 

RooStats 

Lightweight 

software tool 

using RooFit 

editor tools 

Reparametrization  
step does not  

modify workflow  
 

BSM 

Higgs combination 



BSM Higgs constraints from 

reparametrization of SM Higgs 

Likelihood model  
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Simplified MSSM (tanβ,mA) 

Imposter model(M,ε) 

Minimal composite 

Higgs(ξ) 

Two Higgs  

Double Model 

(tanβ,cos(α-β)) 

Portal model (mX) 

(ATLAS-CONF-2014-010) 



An excursion – Collaborative analyses with workspaces 

• How can you reparametrize existing Higgs likelihoods in practice? 

• Write functions expressions corresponding to new 

parameterization 

 

 

 

 

 

 

• Import transformation in workspace, edit existing model  

Wouter Verkerke, NIKHEF  

w.factory(“expr::mu_gg_func(‘(KF2*Kg2)/ 
                            (0.75*KF2+0.25*KV2)’, 
                            KF2,Kg2,KV2) ; 

w.import(mu_gg_func) ; 

w.factory(“EDIT::newmodel(model,mu_gg=mu_gg_gunc)”) ; 



HistFactory 

K. Cranmer, A. Shibata, G. Lewis, L. Moneta, W. Verkerke (2010)  



HistFactory – structured building of binned template models 

• RooFit modeling building blocks allow to easily construct 

likelihood models that model shape and rate systematics with 

one or more nuisance parameter 

– Only  few lines of code per construction 

• Typical LHC analysis required modeling of 10-50 systematic 

uncertainties in O(10) samples in anywhere between 2 and 100 

channels   Need structured formalism to piece together model 

from specifications. This is the purpose of HistFactory 

• HistFactory conceptually similar to workspace factory, but has 

much higher level semantics 

– Elements represent physics concepts (channels, samples, uncertainties and 

their relation) rather than mathematical concepts 

– Descriptive elements are represented by C++ objects (like roofit), 

and can be configured in C++, or alternively from an XML file 

• HistFactory builds a RooFit (mathematical) model  

from a physics model. 

Wouter Verkerke, NIKHEF 



HistFactory elements of a channel 

• Hierarchy of concepts for description of one measurement channel 

Wouter Verkerke, NIKHEF 

(Theory) sample  

normalization 

Template morphing shape systematic 

Beeston-Barlow-lite MC statistical uncertainties 



HistFactory elements of measurement 

• One or more channels are combined to form a measurement 

– Along with some extra information (declaration of the POI, the luminosity of 

the data sample and its uncertainty) 

Wouter Verkerke, NIKHEF 

Once physics model is defined, one line of code will turn it into a RooFit likelihood  



How is Higgs discovery different from a simple fit? 

Wouter Verkerke, NIKHEF  

Higgs combination model Gaussian + polynomial 

ROOT TH1 ROOT TF1 

Maximum Likelihood estimation of 

parameters μ,θ using MINUIT  

(MIGRAD, HESSE, MINOS) 

μ = 5.3 ± 1.7 

“inside ROOT” 

Likelihood Model 

orders of magnitude more 

complicated. Describes 

    - O(100) signal distributions 

    - O(100) control sample distr. 

    - O(1000) parameters 

                    representing  

                    syst. uncertainties 

Frequentist confidence interval 

construction and/or p-value 

calculation not available 

as ‘ready-to-run’ algorithm  

in ROOT 

✔ 



RooStats 

K. Cranmer, L. Moneta, S. Kreiss, G. Kukartsev, G. Schott, G. Petrucciani, WV - 2008 



The benefits of modularity 

• Perform different statistical test on exactly the same model 
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RooFit,  or  RooFit+HistFactory 

RooStats 

(Frequentist 

with toys)  

RooWorkspace 

RooStats 

(Frequentist 

asymptotic)  

RooStats 

Bayesian 

MCMC 

“Simple fit” 

 (ML Fit with 
HESSE or 
MINOS) 



Maximum Likelihood estimation as simple statistical analysis 

• Step 1 – Construct the likelihood function L(x|p) 

 

 

 

 

 

 

 

 

 

 

• Step 2 – Statistical tests on parameter of interest p  

 

 

 

Wouter Verkerke, NIKHEF  

RooStats 

RooWorkspace 

RooWorkspace w(“w”) ; 

w.factory(“Gaussian::sig(x[-10,10],m[0],s[1])”; 

w.factory(“Chebychev::bkg(x,a1[-1,1])”) ; 

w.factory(“SUM::model(fsig[0,1]*sig,bkg)”) ; 

w.writeToFile(“L.root”) ; 

RooWorkspace* w=TFile::Open(“L.root”)->Get(“w”) ; 

RooAbsPdf* model = w->pdf(“model”) ; 

pdf->fitTo(data) ; 



The need for fundamental statistical techniques 
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Frequentist statistics  

Confidence interval 

or p-value 

Posterior on s 

or Bayes factor 
s = x ± y 

Bayesian statistics  Maximum Likelihood 

lm (Nobs ) =
L(N | m)

L(N | m̂)
P(m)µL(x |m) ×p(m)

0
)(ln

ˆ


 ii pp

pd

pLd




No assumptions 

on normal distributions, 

or asymptotic validity  

for high statistics 

Formulation 

of p(th|data) 



But fundamental techniques can be complicated to 

execute… 

• Example of confidence interval calculation with Neyman construction 

– Need to construct ‘confidence belt’ using toy MC. Intersection observed data with 

belt defined interval in POI  with guaranteed coverage   

 

 

 

 

 

 

 

 

 

 

• Expensive, complicated procedure, but completely procedural 

once Likelihood and parameter of interest are fixed  

 Can be wrapped in a tool that runs effectively ‘out-of-the-box’  

 

 

 

 

 

 

Wouter Verkerke, NIKHEF  

x=3.2 

observable x 

p
a

ra
m

e
te

r 
μ

 tμ(x,μ) 

Likelihood Ratio 

p
a

ra
m

e
te

r 
μ

 = -2 log
L(x | m)

L(x | m̂)



Running RooStats interval calculations ‘out-of-the-box’ 

• Confidence intervals calculated with model 

– ‘Simple 

Fit’ 

 

 

– Feldman 

Cousins 

(Frequentist 

Confidence 

Interval) 

 

– Bayesian  

(MCMC) 
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FeldmanCousins fc;  

fc.SetPdf(myModel);  

fc.SetData(data); fc.SetParameters(myPOU);  

fc.UseAdaptiveSampling(true);  

fc.FluctuateNumDataEntries(false);  

fc.SetNBins(100); // number of points to test per parameter  

fc.SetTestSize(.1);  

ConfInterval* fcint = fc.GetInterval();  

UniformProposal up;  

MCMCCalculator mc;  

mc.SetPdf(w::PC);  

mc.SetData(data);  mc.SetParameters(s);  

mc.SetProposalFunction(up);  

mc.SetNumIters(100000); // steps in the chain  

mc.SetTestSize(.1); // 90% CL  

mc.SetNumBins(50); // used in posterior histogram  

mc.SetNumBurnInSteps(40);  

ConfInterval* mcmcint = mc.GetInterval(); 

RooAbsReal* nll = myModel->createNLL(data) ; 

RooMinuit m(*nll) ; 

m.migrad() ; 

m.hesse() ; 



But you can also look ‘in the box’ and build your own 

Tool to calculate p-values for a given hypothesis 

Tool to construct  

interval from  

hypo test results 

The test statistic 

to be used for 

the calculation 

of p-values  

)(
q





 dqqf

obsq






,

)|(

)|( 
qf

Tool to construct 

test statistic 

distribution 

Offset advanced control over details of statistical 

procedure (use of CLS, choice of test statistic, boundaries…) 



RooStats class structure 
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Summary 

• RooFit and RooStats allow you to perform advanced statistical data 

analysis 

– LHC Higgs results a prominent example 

Wouter Verkerke, NIKHEF  

• RooFit provides (almost) limitless  

model building facilities 

– Concept of persistable model workspace allows 

to separate model building and model 

interpretation 

– HistFactory package introduces structured model 

building for binned  likelihood template models 

that are common in LHC analyses 

• Concept of RooFit Workspace has 

completely restructured HEP analysis 

workflow with ‘collaborative modeling’ 

• RooStats provide a wide set of statistical 

tests that can be performed on RooFit 

models 

– Bayesian, Frequentist and Likelihood-based test 

concepts 

 

 

CMS 

ATLAS 



The future - physics 

• Many more high-profile RooFit/RooStats full likelihood 

combinations in the works 

– Combination of ATLAS and CMS Higgs results 

– CMS/LHC combination of rare B-decays 

• But many more combinations are easily imaginable & feasible 

– Combination across physics domains (e.g. SUSY and Higgs, or Exotics and 

Higgs)  reparametrization allows to constrain parameters of BSM physics 

models that have features in both domains (e.g. 2 Higgs Doublet Models) 

– Incorporation of more sophisticated models for detector performance 

measurements (now often simple Gaussians).  

 

Many ideas ongoing (e.g eigenvector diagonalization of calibration 

uncertainties across pT bins  less parameters with correlated subsidiary 

measurement), modeling of correlated effects between systematic 

uncertainties (e.g. Jet energy scales and flavor tagging) 
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The future - computing 

• Technical scaling and performance generally unproblematic 

– MINUIT has been shown to still work with 10.000 parameters, but do you really 
need so much detail? 

– Persistence works miraculously well, given complexity of serialization problem 

– Algorithmic optimization of likelihood calculations works well 

– Likelihood calculations trivially parallelizable. But more work can be done here  
(e.g. portability of calculations to GPUs, taking advantage of modern processor 
architectures for vectorization) 

– Bayesian algorithms still need more development and tuning 

• But physicists are very good and pushing performance and 
scalability to the limits 

– Generally, one keep adding features and details until model becomes ‘too slow’ 

– But if every Higgs channel reaches this point on its own, a channel combination 
is already ‘way too slow’ from the onset 

– Need to learn how to limit complexity  Prune irrelevant details from physics 
models, possibly a posteriori. Work in progress, some good ideas around 

• Looking forward to LHC Run-2 
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