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There has to be a better way.
Modern HEP analysis of ROOT TTrees has... 
· too much hand-art,
· too much boilerplate,
· not reproducible enough,
· isn’t developed iteratively,
· isn't faster enough!
A modern HEP analysis requires many scripts, running on the GRID, use of experiment-validated ROOT TTree datasets that are very large… 
Most of us code this up in multiple steps, adding to a Franken monster as we go. Rerunning is error prone because many of the steps must be 
done by hand, in a specific order, often with hand editing between. And adding a new plot can take hours because it requires remaking all the 
old plots on a large dataset. Surely we can do better than this in the modern era of distributed computing, sophisticated programming 
languages, build bots, and all the other modern software that has sprouted since we invented the analysis chain!

Personally, I need this. I’m a professor and my duty cycle is low. It is even more likely that I will forget a setup than one of my students or 
postdocs. What I present here isn’t a complete solution, but represents experiments I’ve done in an attempt to solve this problem for myself.

This Solution:
1. Declarative Programming
2. Plot provenance for tracking and caching
3. TeamCity BuildServer
This poster is mostly about the declarative programming aspec, which enables plot provenance and caching, and which is by far the most 
complex component of this set of analysis tools.

Real World Use:
Most of the lessons and measurements of success and failure come from one analysis performed by the author using this framework. The 
recently released search for Hidden Valley particles in the calorimeter had a part of the background study done in this framework. The general 
experience: coding the physics and the selection was much faster than anything done previously. For the analysis see 
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-041/

Some interesting facts about the code for this analysis:
· Two projects were written. One to calculate the background and one to explore correlations between two jets of various analysis variables. It 
did not feel natural to put everything in a single analysis program.
· Data and MC ntuples were different, which made using them with common code difficult (C# is strongly typed, so needs to know the layout of 
the TTree at compile time). A common event data model was built to get around this complication. The expression tree translation shouldhave 
removed all evidence of this in the generated C++ code, though this was not carefully examined.
· The library that handles the main analysis cuts, the EDM translation, MC/reconstruction object matching, etc, is 350 lines of code. In the 
analysis the function with the most lines of code is just making many plots with few logic decisions

Besides problems mentioned elsewhere in this poster, there were some issues encountered:
· The experiment is moving towards standard tools which depend on data files and libraries, making it much harder to make this a cross platform 
analysis.
C# is strongly typed, so a TTree’s layout must be well known in advance. The tools to do this scanning are not friction free.
The function Where has a special (magic) signature:

IQueriable<Jet> Where<Jet> (
IQueriable<Jet> sourceSequence,
Expression<Func<Jet,bool>> test);

The Expression<> type tells the compiler not to pass the value of the expression, but an expression tree that represents the expression. Thus the 
Where function gets passed an expression tree—a data-structure that can be examined by the low level library… and be converted into C++ 
code (or anything else)!!

Extras:
Because the C++ translator gets a completely specified expression tree it can be manipulated directly by that code. This allows for a surprising 
amount of flexibility.
· Most ROOT TTree’s in ATLAS are flat, not objects, but arrays of floating point numbers. For example, the information for a jet might be spread 
across several arrays (eta, phi, pT, etc.). Though possible to use with this tool, it isn’t very convenient. A dummy jet object can be created, with 
members eta, phi, and pT. During the expression tree translation phase this dummy jet object can be translated into direct array accesses.
· Sometimes the only way is real C++ code. This happens most often because the ROOT API isn’t functional. The most common example seen in 
code is the TLorentzVector. It is possible to embed C++ code in the C# file and have the translator slip it directly into the C++ file.
· Functions like Math::Abs can be translated directly to C++’s fabs using a simple configuration lookup (which the user can add to if they wish).
· The backend is pluggable. There are currently two working: PROOF server (on Linux) and run locally on your Windows computer. The author 
wouldn’t claim writing a new backend was trivial, but it is far simpler than the C++ emitter or the expression tree transformation code.

Limitations:
· The main limitation is the inability to include functions in the expressions. For example, it would be nice to create a goodJet function, and then 
use it all over the code. Unfortunately, the most obvious way of doing this means that the goodJet function is not an expression tree, but 
compiled code. This can’t be translated by the C++ emitter code. By specially declaring goodJet it is possible to get around this, and the 
expression tree translator will work around this, but this is an advanced use of the framework and isn’t totally simple, unfortunately. Here is an 
example that creates an expression to cut on the electromagnetic fraction (EMF) and the nmber of tracks (ntrack). The line after the function 
shows how it is used in the code:

Put everything into a single programming language:
The original goal of this project was to do everything from running on multiple initial datasets to final plot manipulations (including adding plot 
titles, text, etc.) all in one single program.
· It is possible to run on multiple datasets. It is even, with something like a PROOF server, possible to run on multiple datasets simultaneously 
with some minor modifications to the framework. This was a huge success. The author found that it was a feature that was used regularly, but 
only if the multi-dataset running was fairly uninvolved.
· The more complex interaction of two datasets leads to tricky and non-obvious code dependencies due to the nature of the Future construct. 
Indeed, any manipulation of the plots or results are a bit messy. There are programming languages that handle this (e.g. functional ones that 
have extensible monad’s built in). This could even be handled in C# with some sacrifice, but it isn’t clear that it should be. This issue is subtle and 
as yet unresolved.
· The final plot manipulations are painful. Frequently one must do 100’s of iterations, moving text to the left or right by 0.1” or something silly 
like that. This only works if the generation of those plots is fast. Perhaps less than a second or two. However, a typical analysis has 1000’s of 
generated plots and numbers, and it takes real CPU time to determine that no plots needed to be re-run and it was only the end manipulations 
that had to be repeated. This framework did not succeed in this aspect.

Initial Goals:
· Remove as much boiler plate as possible.
· Put everything into a single programming language.
· Encode the multiple steps in an analysis in a single program.
· Enable iterative development of the analysis

Originally motivated by the demands on my time as a professor: how can I quickly generate analysis-grade plots but run over LHC size datasets?
Requirements:
· Must use ROOT files as input (I’m a member of ATLAS!)
· Use C++/native code for the processing loop (speed!)
· Use PROOF (Linux) or run locally with “ease”
· Results should be normal ROOT objects and plots
Stretch Goal:
· Can a plot be self describing?

Data and Analysis Tracking & Preservation:
The author has used electronic log books for over a decade now (OneNote, primarily). As this project evolved, the author realized the following 
scenario was possible: take a jpg/png from the logbook, drag it onto a special program, and have the program dump out the names of the input 
ROOT files and every single thing that happened after that to make the plot.
· As each plot is generated, the complete expression tree is known and in a single place in the program. In fact, it is serialized as a string for a 
cache key. While there is some loss in fidelity—you could not recreate code from this string—it is more than enough to see what cuts were 
made. A serialization of the  actual expression tree is not too difficult (not attempted yet). This is called the query string.
· The input files and datasets are also well known (they are a TChain).
There are a few issues however:
1. The data must be carried along with the plot. Attached to the plot somehow. 
· ROOT’s TH1 doesn’t really have any method to do that (like a “userdata” store). Several ideas were explored. One was to subclass TH1F, and 
the new subclass could store its history. However, opening a ROOT data file containing these special histograms no longer worked correctly 
unless the code had been pre-loaded. This approach was rejected.
· Another was to store the query string in a TObjString along side the plot. The only trick was that the code, as seen above, wants to use a simple 
histogram object—a pair of objects would significantly destroy the usability. So this approach was rejected.
· The current experimental approach is a combination of the two. Use the extended histogram to generate all the plots, and when it is written 
out write out a separate TH1F and a TObjString.
2. Manipulations of the plots in the C# code must be recorded. For example, if you generate an efficiency plot you must divide two plots. So a 
when a call is made to the histogram TH1F::Divide method, it must be recorded. This requires modifying a every single operation and 
manipulation to update the query string and could potentially be quite ugly. The author was saved some trouble because of the Future problem 
mentioned elsewhere. Lots of small utility methods already encapsulated histogram manipulation—only those had to be modified to get around 
this issue. PlotLingowas also created, partly, as an effort to solve this.
3. Finally this must be recorded in the PNG or JPEG or PDF plot. This turns out to be fairly easy. All these image formats (including PDF) allow the 
user to add arbitrary payload to them. Writing code to take a plot and the associated TObjString is not too difficult. The same for the code that 
dumps the result back when an image is dragged onto the program. This additional data increases the size of the image by about a 50% (from 
about 40 KB to 60 KB). One could potentially use DOI’s to shrink it back down, but that comes with its own set of challenges.

Goal: Iterative Development of an Analysis
The main requirement for iterative analysis is being able to make an adjustment to a plot, hit the run key and then be looking at the new plot 
quickly. In general 30 seconds seems to be about when the author starts to be distracted by Facebook. This is most important for running over 
smaller ROOT files (gigabytes). At the same time this can’t get in the way of reasonably efficient running on the large datasets (which is done 
much less frequently). A few features have gone into making sure this works well.
Success:
· If the plot has been made on a previous run and nothing has changed, then a cached version of the plot is used. This is perhaps the largest 
enabler of a quick turn around, and is almost built into the way the problem is solved in this framework. Each plot comes attached with an 
expression tree that details everything from start to finish that is done to the input files to generate the plot. As long as no parameters are 
altered, and the input files haven’t been altered, then the resulting plot must be the same. Input parameters can be a bit tricky to check. For 
example, consider a TH1F that is used to reweight a variable before it is plotted. If that TH1F is changed, then the plot must be remade. So the 
caching must be done carefully. But it isn’t hard. Things are cached on the local system in a local directory. The result is if you have 500 plots in 
your program, and you modify a single one, only that plot is actually run. This can make the difference between hours and minutes for a run.
· Code generated for queries are merged where possible. The key here is if you have 500 plots you want ROOT to loop over the data only once, 
not 500 times. This gets around one of the major limitations of TTree::Draw (one of the inspirations for this work). This is enabled by futures. 
Instead of asking for a Plot, the user asks for a FuturePlot. This is a promise of a plot at some point in the future. After all the promises have 
been accumulated, they can all be combined and run at once.

Failures:
· While the speed up by caching the plots is huge, when one gets up to 1000 plots or so just the time it takes to generate the cache lookups 
starts to become prohibitive—longer than 30 seconds in total. Some of the queries can be quite complex—leading to very long expression trees 
that must be compared. Some work has gone into optimizing this step. This is another area of active development—it is not yet well understood 
what is so expensive about this operation. 
· If plots need to be manipulated—say divided to get a ratio or similar, the place this makes the most sense is right after the plots are generated. 
However, with Futures in the mix this isn’t trivial any longer. When one wants to do the division there aren’t actual plots to divide yet! There are 
ways around this, but they significantly obscure the code, significantly damaging one of the goals of this approach.

Conclusions:
· Declarative programing is superior to the standard imperative for the analysis tasks done by the author.
· There are lots of small friction points in the current tool set. Some due to Windows (HEP is Linux), some due to the nature of leaky 
abstractions, some due to ROOT, and some due to declarative programming.
· The ability to track and carry meta-data with the final plots is very interesting, but not yet fully explored.
· Where next? ATLAS is going through a major rework of its EDM, will have to see how hard that is to incorporate.
· Great deal isn’t covered here (e.g. code optimization!)
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There has to be a better way.
Modern HEP analysis of ROOT TTrees has... 
· too much hand-art,
· too much boilerplate,
· not reproducible enough,
· isn’t developed iteratively,
· isn't faster enough!
A modern HEP analysis requires many scripts, running on the GRID, use of experiment-validated ROOT TTree datasets that are very large… 
Most of us code this up in multiple steps, adding to a Franken monster as we go. Rerunning is error prone because many of the steps must be 
done by hand, in a specific order, often with hand editing between. And adding a new plot can take hours because it requires remaking all the 
old plots on a large dataset. Surely we can do better than this in the modern era of distributed computing, sophisticated programming 
languages, build bots, and all the other modern software that has sprouted since we invented the analysis chain!

Personally, I need this. I’m a professor and my duty cycle is low. It is even more likely that I will forget a setup than one of my students or 
postdocs. What I present here isn’t a complete solution, but represents experiments I’ve done in an attempt to solve this problem for myself.

This Solution:
1. Declarative Programming
2. Plot provenance for tracking and caching
3. TeamCity BuildServer
This poster is mostly about the declarative programming aspec, which enables plot provenance and caching, and which is by far the most 
complex component of this set of analysis tools.

Real World Use:
Most of the lessons and measurements of success and failure come from one analysis performed by the author using this framework. The 
recently released search for Hidden Valley particles in the calorimeter had a part of the background study done in this framework. The general 
experience: coding the physics and the selection was much faster than anything done previously. For the analysis see 
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-041/

Some interesting facts about the code for this analysis:
· Two projects were written. One to calculate the background and one to explore correlations between two jets of various analysis variables. It 
did not feel natural to put everything in a single analysis program.
· Data and MC ntuples were different, which made using them with common code difficult (C# is strongly typed, so needs to know the layout of 
the TTree at compile time). A common event data model was built to get around this complication. The expression tree translation shouldhave 
removed all evidence of this in the generated C++ code, though this was not carefully examined.
· The library that handles the main analysis cuts, the EDM translation, MC/reconstruction object matching, etc, is 350 lines of code. In the 
analysis the function with the most lines of code is just making many plots with few logic decisions

Besides problems mentioned elsewhere in this poster, there were some issues encountered:
· The experiment is moving towards standard tools which depend on data files and libraries, making it much harder to make this a cross platform 
analysis.
C# is strongly typed, so a TTree’s layout must be well known in advance. The tools to do this scanning are not friction free.
The function Where has a special (magic) signature:

IQueriable<Jet> Where<Jet> (
IQueriable<Jet> sourceSequence,
Expression<Func<Jet,bool>> test);

The Expression<> type tells the compiler not to pass the value of the expression, but an expression tree that represents the expression. Thus the 
Where function gets passed an expression tree—a data-structure that can be examined by the low level library… and be converted into C++ 
code (or anything else)!!

Extras:
Because the C++ translator gets a completely specified expression tree it can be manipulated directly by that code. This allows for a surprising 
amount of flexibility.
· Most ROOT TTree’s in ATLAS are flat, not objects, but arrays of floating point numbers. For example, the information for a jet might be spread 
across several arrays (eta, phi, pT, etc.). Though possible to use with this tool, it isn’t very convenient. A dummy jet object can be created, with 
members eta, phi, and pT. During the expression tree translation phase this dummy jet object can be translated into direct array accesses.
· Sometimes the only way is real C++ code. This happens most often because the ROOT API isn’t functional. The most common example seen in 
code is the TLorentzVector. It is possible to embed C++ code in the C# file and have the translator slip it directly into the C++ file.
· Functions like Math::Abs can be translated directly to C++’s fabs using a simple configuration lookup (which the user can add to if they wish).
· The backend is pluggable. There are currently two working: PROOF server (on Linux) and run locally on your Windows computer. The author 
wouldn’t claim writing a new backend was trivial, but it is far simpler than the C++ emitter or the expression tree transformation code.

Limitations:
· The main limitation is the inability to include functions in the expressions. For example, it would be nice to create a goodJet function, and then 
use it all over the code. Unfortunately, the most obvious way of doing this means that the goodJet function is not an expression tree, but 
compiled code. This can’t be translated by the C++ emitter code. By specially declaring goodJet it is possible to get around this, and the 
expression tree translator will work around this, but this is an advanced use of the framework and isn’t totally simple, unfortunately. Here is an 
example that creates an expression to cut on the electromagnetic fraction (EMF) and the nmber of tracks (ntrack). The line after the function 
shows how it is used in the code:

Put everything into a single programming language:
The original goal of this project was to do everything from running on multiple initial datasets to final plot manipulations (including adding plot 
titles, text, etc.) all in one single program.
· It is possible to run on multiple datasets. It is even, with something like a PROOF server, possible to run on multiple datasets simultaneously 
with some minor modifications to the framework. This was a huge success. The author found that it was a feature that was used regularly, but 
only if the multi-dataset running was fairly uninvolved.
· The more complex interaction of two datasets leads to tricky and non-obvious code dependencies due to the nature of the Future construct. 
Indeed, any manipulation of the plots or results are a bit messy. There are programming languages that handle this (e.g. functional ones that 
have extensible monad’s built in). This could even be handled in C# with some sacrifice, but it isn’t clear that it should be. This issue is subtle and 
as yet unresolved.
· The final plot manipulations are painful. Frequently one must do 100’s of iterations, moving text to the left or right by 0.1” or something silly 
like that. This only works if the generation of those plots is fast. Perhaps less than a second or two. However, a typical analysis has 1000’s of 
generated plots and numbers, and it takes real CPU time to determine that no plots needed to be re-run and it was only the end manipulations 
that had to be repeated. This framework did not succeed in this aspect.

Initial Goals:
· Remove as much boiler plate as possible.
· Put everything into a single programming language.
· Encode the multiple steps in an analysis in a single program.
· Enable iterative development of the analysis

Originally motivated by the demands on my time as a professor: how can I quickly generate analysis-grade plots but run over LHC size datasets?
Requirements:
· Must use ROOT files as input (I’m a member of ATLAS!)
· Use C++/native code for the processing loop (speed!)
· Use PROOF (Linux) or run locally with “ease”
· Results should be normal ROOT objects and plots
Stretch Goal:
· Can a plot be self describing?

Data and Analysis Tracking & Preservation:
The author has used electronic log books for over a decade now (OneNote, primarily). As this project evolved, the author realized the following 
scenario was possible: take a jpg/png from the logbook, drag it onto a special program, and have the program dump out the names of the input 
ROOT files and every single thing that happened after that to make the plot.
· As each plot is generated, the complete expression tree is known and in a single place in the program. In fact, it is serialized as a string for a 
cache key. While there is some loss in fidelity—you could not recreate code from this string—it is more than enough to see what cuts were 
made. A serialization of the  actual expression tree is not too difficult (not attempted yet). This is called the query string.
· The input files and datasets are also well known (they are a TChain).
There are a few issues however:
1. The data must be carried along with the plot. Attached to the plot somehow. 
· ROOT’s TH1 doesn’t really have any method to do that (like a “userdata” store). Several ideas were explored. One was to subclass TH1F, and 
the new subclass could store its history. However, opening a ROOT data file containing these special histograms no longer worked correctly 
unless the code had been pre-loaded. This approach was rejected.
· Another was to store the query string in a TObjString along side the plot. The only trick was that the code, as seen above, wants to use a simple 
histogram object—a pair of objects would significantly destroy the usability. So this approach was rejected.
· The current experimental approach is a combination of the two. Use the extended histogram to generate all the plots, and when it is written 
out write out a separate TH1F and a TObjString.
2. Manipulations of the plots in the C# code must be recorded. For example, if you generate an efficiency plot you must divide two plots. So a 
when a call is made to the histogram TH1F::Divide method, it must be recorded. This requires modifying a every single operation and 
manipulation to update the query string and could potentially be quite ugly. The author was saved some trouble because of the Future problem 
mentioned elsewhere. Lots of small utility methods already encapsulated histogram manipulation—only those had to be modified to get around 
this issue. PlotLingowas also created, partly, as an effort to solve this.
3. Finally this must be recorded in the PNG or JPEG or PDF plot. This turns out to be fairly easy. All these image formats (including PDF) allow the 
user to add arbitrary payload to them. Writing code to take a plot and the associated TObjString is not too difficult. The same for the code that 
dumps the result back when an image is dragged onto the program. This additional data increases the size of the image by about a 50% (from 
about 40 KB to 60 KB). One could potentially use DOI’s to shrink it back down, but that comes with its own set of challenges.

Goal: Iterative Development of an Analysis
The main requirement for iterative analysis is being able to make an adjustment to a plot, hit the run key and then be looking at the new plot 
quickly. In general 30 seconds seems to be about when the author starts to be distracted by Facebook. This is most important for running over 
smaller ROOT files (gigabytes). At the same time this can’t get in the way of reasonably efficient running on the large datasets (which is done 
much less frequently). A few features have gone into making sure this works well.
Success:
· If the plot has been made on a previous run and nothing has changed, then a cached version of the plot is used. This is perhaps the largest 
enabler of a quick turn around, and is almost built into the way the problem is solved in this framework. Each plot comes attached with an 
expression tree that details everything from start to finish that is done to the input files to generate the plot. As long as no parameters are 
altered, and the input files haven’t been altered, then the resulting plot must be the same. Input parameters can be a bit tricky to check. For 
example, consider a TH1F that is used to reweight a variable before it is plotted. If that TH1F is changed, then the plot must be remade. So the 
caching must be done carefully. But it isn’t hard. Things are cached on the local system in a local directory. The result is if you have 500 plots in 
your program, and you modify a single one, only that plot is actually run. This can make the difference between hours and minutes for a run.
· Code generated for queries are merged where possible. The key here is if you have 500 plots you want ROOT to loop over the data only once, 
not 500 times. This gets around one of the major limitations of TTree::Draw (one of the inspirations for this work). This is enabled by futures. 
Instead of asking for a Plot, the user asks for a FuturePlot. This is a promise of a plot at some point in the future. After all the promises have 
been accumulated, they can all be combined and run at once.

Failures:
· While the speed up by caching the plots is huge, when one gets up to 1000 plots or so just the time it takes to generate the cache lookups 
starts to become prohibitive—longer than 30 seconds in total. Some of the queries can be quite complex—leading to very long expression trees 
that must be compared. Some work has gone into optimizing this step. This is another area of active development—it is not yet well understood 
what is so expensive about this operation. 
· If plots need to be manipulated—say divided to get a ratio or similar, the place this makes the most sense is right after the plots are generated. 
However, with Futures in the mix this isn’t trivial any longer. When one wants to do the division there aren’t actual plots to divide yet! There are 
ways around this, but they significantly obscure the code, significantly damaging one of the goals of this approach.

Conclusions:
· Declarative programing is superior to the standard imperative for the analysis tasks done by the author.
· There are lots of small friction points in the current tool set. Some due to Windows (HEP is Linux), some due to the nature of leaky 
abstractions, some due to ROOT, and some due to declarative programming.
· The ability to track and carry meta-data with the final plots is very interesting, but not yet fully explored.
· Where next? ATLAS is going through a major rework of its EDM, will have to see how hard that is to incorporate.
· Great deal isn’t covered here (e.g. code optimization!)
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var ptRangePlot = rangeJets
.Select(j => j.Jet )
. FuturePlot ( EDMPlot.SpPtPlot , "Restricted" )
.Save( outputFolder );

var ptw = ptRangePlot.Value ;

1 Run over a TChain and generate a plot (ptw).



var ptRangePlot = rangeJets
.Select(j => j.Jet )
. FuturePlot ( EDMPlot.SpPtPlot , "Restricted" )
.Save( outputFolder );

var ptw = ptRangePlot.Value ;

var weightedJetCount = ( from j in matchedTruthJets
let iBin = ptw.FindBin ( j.Jet.c.Pt ())
let wt = ptw.GetBinContent ( iBin )
select wt)

. FutureAggregate (0.0, ( acc, val ) => acc + val );

2 Run over a second TChain using that plot as a weighting factor



var ptRangePlot = rangeJets
.Select(j => j.Jet )
. FuturePlot ( EDMPlot.SpPtPlot , "Restricted" )
.Save( outputFolder );

var ptw = ptRangePlot.Value ;

var weightedJetCount = ( from j in matchedTruthJets
let iBin = ptw.FindBin ( j.Jet.c.Pt ())
let wt = ptw.GetBinContent ( iBin )
select wt)

. FutureAggregate (0.0, ( acc, val ) => acc + val );

2 Run over a second TChain using that plot as a weighting factor

All in one program!
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There has to be a better way.
Modern HEP analysis of ROOT TTrees has... 
· too much hand-art,
· too much boilerplate,
· not reproducible enough,
· isn’t developed iteratively,
· isn't faster enough!
A modern HEP analysis requires many scripts, running on the GRID, use of experiment-validated ROOT TTree datasets that are very large… 
Most of us code this up in multiple steps, adding to a Franken monster as we go. Rerunning is error prone because many of the steps must be 
done by hand, in a specific order, often with hand editing between. And adding a new plot can take hours because it requires remaking all the 
old plots on a large dataset. Surely we can do better than this in the modern era of distributed computing, sophisticated programming 
languages, build bots, and all the other modern software that has sprouted since we invented the analysis chain!

Personally, I need this. I’m a professor and my duty cycle is low. It is even more likely that I will forget a setup than one of my students or 
postdocs. What I present here isn’t a complete solution, but represents experiments I’ve done in an attempt to solve this problem for myself.

This Solution:
1. Declarative Programming
2. Plot provenance for tracking and caching
3. TeamCity BuildServer
This poster is mostly about the declarative programming aspec, which enables plot provenance and caching, and which is by far the most 
complex component of this set of analysis tools.

Real World Use:
Most of the lessons and measurements of success and failure come from one analysis performed by the author using this framework. The 
recently released search for Hidden Valley particles in the calorimeter had a part of the background study done in this framework. The general 
experience: coding the physics and the selection was much faster than anything done previously. For the analysis see 
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-041/

Some interesting facts about the code for this analysis:
· Two projects were written. One to calculate the background and one to explore correlations between two jets of various analysis variables. It 
did not feel natural to put everything in a single analysis program.
· Data and MC ntuples were different, which made using them with common code difficult (C# is strongly typed, so needs to know the layout of 
the TTree at compile time). A common event data model was built to get around this complication. The expression tree translation shouldhave 
removed all evidence of this in the generated C++ code, though this was not carefully examined.
· The library that handles the main analysis cuts, the EDM translation, MC/reconstruction object matching, etc, is 350 lines of code. In the 
analysis the function with the most lines of code is just making many plots with few logic decisions

Besides problems mentioned elsewhere in this poster, there were some issues encountered:
· The experiment is moving towards standard tools which depend on data files and libraries, making it much harder to make this a cross platform 
analysis.
C# is strongly typed, so a TTree’s layout must be well known in advance. The tools to do this scanning are not friction free.
The function Where has a special (magic) signature:

IQueriable<Jet> Where<Jet> (
IQueriable<Jet> sourceSequence,
Expression<Func<Jet,bool>> test);

The Expression<> type tells the compiler not to pass the value of the expression, but an expression tree that represents the expression. Thus the 
Where function gets passed an expression tree—a data-structure that can be examined by the low level library… and be converted into C++ 
code (or anything else)!!

Extras:
Because the C++ translator gets a completely specified expression tree it can be manipulated directly by that code. This allows for a surprising 
amount of flexibility.
· Most ROOT TTree’s in ATLAS are flat, not objects, but arrays of floating point numbers. For example, the information for a jet might be spread 
across several arrays (eta, phi, pT, etc.). Though possible to use with this tool, it isn’t very convenient. A dummy jet object can be created, with 
members eta, phi, and pT. During the expression tree translation phase this dummy jet object can be translated into direct array accesses.
· Sometimes the only way is real C++ code. This happens most often because the ROOT API isn’t functional. The most common example seen in 
code is the TLorentzVector. It is possible to embed C++ code in the C# file and have the translator slip it directly into the C++ file.
· Functions like Math::Abs can be translated directly to C++’s fabs using a simple configuration lookup (which the user can add to if they wish).
· The backend is pluggable. There are currently two working: PROOF server (on Linux) and run locally on your Windows computer. The author 
wouldn’t claim writing a new backend was trivial, but it is far simpler than the C++ emitter or the expression tree transformation code.

Limitations:
· The main limitation is the inability to include functions in the expressions. For example, it would be nice to create a goodJet function, and then 
use it all over the code. Unfortunately, the most obvious way of doing this means that the goodJet function is not an expression tree, but 
compiled code. This can’t be translated by the C++ emitter code. By specially declaring goodJet it is possible to get around this, and the 
expression tree translator will work around this, but this is an advanced use of the framework and isn’t totally simple, unfortunately. Here is an 
example that creates an expression to cut on the electromagnetic fraction (EMF) and the nmber of tracks (ntrack). The line after the function 
shows how it is used in the code:

Put everything into a single programming language:
The original goal of this project was to do everything from running on multiple initial datasets to final plot manipulations (including adding plot 
titles, text, etc.) all in one single program.
· It is possible to run on multiple datasets. It is even, with something like a PROOF server, possible to run on multiple datasets simultaneously 
with some minor modifications to the framework. This was a huge success. The author found that it was a feature that was used regularly, but 
only if the multi-dataset running was fairly uninvolved.
· The more complex interaction of two datasets leads to tricky and non-obvious code dependencies due to the nature of the Future construct. 
Indeed, any manipulation of the plots or results are a bit messy. There are programming languages that handle this (e.g. functional ones that 
have extensible monad’s built in). This could even be handled in C# with some sacrifice, but it isn’t clear that it should be. This issue is subtle and 
as yet unresolved.
· The final plot manipulations are painful. Frequently one must do 100’s of iterations, moving text to the left or right by 0.1” or something silly 
like that. This only works if the generation of those plots is fast. Perhaps less than a second or two. However, a typical analysis has 1000’s of 
generated plots and numbers, and it takes real CPU time to determine that no plots needed to be re-run and it was only the end manipulations 
that had to be repeated. This framework did not succeed in this aspect.

Initial Goals:
· Remove as much boiler plate as possible.
· Put everything into a single programming language.
· Encode the multiple steps in an analysis in a single program.
· Enable iterative development of the analysis

Originally motivated by the demands on my time as a professor: how can I quickly generate analysis-grade plots but run over LHC size datasets?
Requirements:
· Must use ROOT files as input (I’m a member of ATLAS!)
· Use C++/native code for the processing loop (speed!)
· Use PROOF (Linux) or run locally with “ease”
· Results should be normal ROOT objects and plots
Stretch Goal:
· Can a plot be self describing?

Data and Analysis Tracking & Preservation:
The author has used electronic log books for over a decade now (OneNote, primarily). As this project evolved, the author realized the following 
scenario was possible: take a jpg/png from the logbook, drag it onto a special program, and have the program dump out the names of the input 
ROOT files and every single thing that happened after that to make the plot.
· As each plot is generated, the complete expression tree is known and in a single place in the program. In fact, it is serialized as a string for a 
cache key. While there is some loss in fidelity—you could not recreate code from this string—it is more than enough to see what cuts were 
made. A serialization of the  actual expression tree is not too difficult (not attempted yet). This is called the query string.
· The input files and datasets are also well known (they are a TChain).
There are a few issues however:
1. The data must be carried along with the plot. Attached to the plot somehow. 
· ROOT’s TH1 doesn’t really have any method to do that (like a “userdata” store). Several ideas were explored. One was to subclass TH1F, and 
the new subclass could store its history. However, opening a ROOT data file containing these special histograms no longer worked correctly 
unless the code had been pre-loaded. This approach was rejected.
· Another was to store the query string in a TObjString along side the plot. The only trick was that the code, as seen above, wants to use a simple 
histogram object—a pair of objects would significantly destroy the usability. So this approach was rejected.
· The current experimental approach is a combination of the two. Use the extended histogram to generate all the plots, and when it is written 
out write out a separate TH1F and a TObjString.
2. Manipulations of the plots in the C# code must be recorded. For example, if you generate an efficiency plot you must divide two plots. So a 
when a call is made to the histogram TH1F::Divide method, it must be recorded. This requires modifying a every single operation and 
manipulation to update the query string and could potentially be quite ugly. The author was saved some trouble because of the Future problem 
mentioned elsewhere. Lots of small utility methods already encapsulated histogram manipulation—only those had to be modified to get around 
this issue. PlotLingowas also created, partly, as an effort to solve this.
3. Finally this must be recorded in the PNG or JPEG or PDF plot. This turns out to be fairly easy. All these image formats (including PDF) allow the 
user to add arbitrary payload to them. Writing code to take a plot and the associated TObjString is not too difficult. The same for the code that 
dumps the result back when an image is dragged onto the program. This additional data increases the size of the image by about a 50% (from 
about 40 KB to 60 KB). One could potentially use DOI’s to shrink it back down, but that comes with its own set of challenges.

Goal: Iterative Development of an Analysis
The main requirement for iterative analysis is being able to make an adjustment to a plot, hit the run key and then be looking at the new plot 
quickly. In general 30 seconds seems to be about when the author starts to be distracted by Facebook. This is most important for running over 
smaller ROOT files (gigabytes). At the same time this can’t get in the way of reasonably efficient running on the large datasets (which is done 
much less frequently). A few features have gone into making sure this works well.
Success:
· If the plot has been made on a previous run and nothing has changed, then a cached version of the plot is used. This is perhaps the largest 
enabler of a quick turn around, and is almost built into the way the problem is solved in this framework. Each plot comes attached with an 
expression tree that details everything from start to finish that is done to the input files to generate the plot. As long as no parameters are 
altered, and the input files haven’t been altered, then the resulting plot must be the same. Input parameters can be a bit tricky to check. For 
example, consider a TH1F that is used to reweight a variable before it is plotted. If that TH1F is changed, then the plot must be remade. So the 
caching must be done carefully. But it isn’t hard. Things are cached on the local system in a local directory. The result is if you have 500 plots in 
your program, and you modify a single one, only that plot is actually run. This can make the difference between hours and minutes for a run.
· Code generated for queries are merged where possible. The key here is if you have 500 plots you want ROOT to loop over the data only once, 
not 500 times. This gets around one of the major limitations of TTree::Draw (one of the inspirations for this work). This is enabled by futures. 
Instead of asking for a Plot, the user asks for a FuturePlot. This is a promise of a plot at some point in the future. After all the promises have 
been accumulated, they can all be combined and run at once.

Failures:
· While the speed up by caching the plots is huge, when one gets up to 1000 plots or so just the time it takes to generate the cache lookups 
starts to become prohibitive—longer than 30 seconds in total. Some of the queries can be quite complex—leading to very long expression trees 
that must be compared. Some work has gone into optimizing this step. This is another area of active development—it is not yet well understood 
what is so expensive about this operation. 
· If plots need to be manipulated—say divided to get a ratio or similar, the place this makes the most sense is right after the plots are generated. 
However, with Futures in the mix this isn’t trivial any longer. When one wants to do the division there aren’t actual plots to divide yet! There are 
ways around this, but they significantly obscure the code, significantly damaging one of the goals of this approach.

Conclusions:
· Declarative programing is superior to the standard imperative for the analysis tasks done by the author.
· There are lots of small friction points in the current tool set. Some due to Windows (HEP is Linux), some due to the nature of leaky 
abstractions, some due to ROOT, and some due to declarative programming.
· The ability to track and carry meta-data with the final plots is very interesting, but not yet fully explored.
· Where next? ATLAS is going through a major rework of its EDM, will have to see how hard that is to incorporate.
· Great deal isn’t covered here (e.g. code optimization!)

Speed



Actual data processing must be in C++ and on standard ATLAS root files (D3PDs)

var ptRangePlot = rangeJets
.Select(j => j.Jet )
. FuturePlot ( EDMPlot.SpPtPlot , "Restricted" )
.Save( outputFolder );

C# Code is turned into data that the driver library can manipulate!

TSelector on PROOF or locally!



Single plot code generation nearly the same as hand written speed!

BUT:

500 plots generated at once still 
needs some work

Combining plots that are similar, 
lifting loops – wrote a small 
optimizer

Hard!!!

More work to do



There has to be a better way.
Modern HEP analysis of ROOT TTrees has... 
· too much hand-art,
· too much boilerplate,
· not reproducible enough,
· isn’t developed iteratively,
· isn't faster enough!
A modern HEP analysis requires many scripts, running on the GRID, use of experiment-validated ROOT TTree datasets that are very large… 
Most of us code this up in multiple steps, adding to a Franken monster as we go. Rerunning is error prone because many of the steps must be 
done by hand, in a specific order, often with hand editing between. And adding a new plot can take hours because it requires remaking all the 
old plots on a large dataset. Surely we can do better than this in the modern era of distributed computing, sophisticated programming 
languages, build bots, and all the other modern software that has sprouted since we invented the analysis chain!

Personally, I need this. I’m a professor and my duty cycle is low. It is even more likely that I will forget a setup than one of my students or 
postdocs. What I present here isn’t a complete solution, but represents experiments I’ve done in an attempt to solve this problem for myself.

This Solution:
1. Declarative Programming
2. Plot provenance for tracking and caching
3. TeamCity BuildServer
This poster is mostly about the declarative programming aspec, which enables plot provenance and caching, and which is by far the most 
complex component of this set of analysis tools.

Real World Use:
Most of the lessons and measurements of success and failure come from one analysis performed by the author using this framework. The 
recently released search for Hidden Valley particles in the calorimeter had a part of the background study done in this framework. The general 
experience: coding the physics and the selection was much faster than anything done previously. For the analysis see 
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-041/

Some interesting facts about the code for this analysis:
· Two projects were written. One to calculate the background and one to explore correlations between two jets of various analysis variables. It 
did not feel natural to put everything in a single analysis program.
· Data and MC ntuples were different, which made using them with common code difficult (C# is strongly typed, so needs to know the layout of 
the TTree at compile time). A common event data model was built to get around this complication. The expression tree translation shouldhave 
removed all evidence of this in the generated C++ code, though this was not carefully examined.
· The library that handles the main analysis cuts, the EDM translation, MC/reconstruction object matching, etc, is 350 lines of code. In the 
analysis the function with the most lines of code is just making many plots with few logic decisions

Besides problems mentioned elsewhere in this poster, there were some issues encountered:
· The experiment is moving towards standard tools which depend on data files and libraries, making it much harder to make this a cross platform 
analysis.
C# is strongly typed, so a TTree’s layout must be well known in advance. The tools to do this scanning are not friction free.
The function Where has a special (magic) signature:

IQueriable<Jet> Where<Jet> (
IQueriable<Jet> sourceSequence,
Expression<Func<Jet,bool>> test);

The Expression<> type tells the compiler not to pass the value of the expression, but an expression tree that represents the expression. Thus the 
Where function gets passed an expression tree—a data-structure that can be examined by the low level library… and be converted into C++ 
code (or anything else)!!

Extras:
Because the C++ translator gets a completely specified expression tree it can be manipulated directly by that code. This allows for a surprising 
amount of flexibility.
· Most ROOT TTree’s in ATLAS are flat, not objects, but arrays of floating point numbers. For example, the information for a jet might be spread 
across several arrays (eta, phi, pT, etc.). Though possible to use with this tool, it isn’t very convenient. A dummy jet object can be created, with 
members eta, phi, and pT. During the expression tree translation phase this dummy jet object can be translated into direct array accesses.
· Sometimes the only way is real C++ code. This happens most often because the ROOT API isn’t functional. The most common example seen in 
code is the TLorentzVector. It is possible to embed C++ code in the C# file and have the translator slip it directly into the C++ file.
· Functions like Math::Abs can be translated directly to C++’s fabs using a simple configuration lookup (which the user can add to if they wish).
· The backend is pluggable. There are currently two working: PROOF server (on Linux) and run locally on your Windows computer. The author 
wouldn’t claim writing a new backend was trivial, but it is far simpler than the C++ emitter or the expression tree transformation code.

Limitations:
· The main limitation is the inability to include functions in the expressions. For example, it would be nice to create a goodJet function, and then 
use it all over the code. Unfortunately, the most obvious way of doing this means that the goodJet function is not an expression tree, but 
compiled code. This can’t be translated by the C++ emitter code. By specially declaring goodJet it is possible to get around this, and the 
expression tree translator will work around this, but this is an advanced use of the framework and isn’t totally simple, unfortunately. Here is an 
example that creates an expression to cut on the electromagnetic fraction (EMF) and the nmber of tracks (ntrack). The line after the function 
shows how it is used in the code:

Put everything into a single programming language:
The original goal of this project was to do everything from running on multiple initial datasets to final plot manipulations (including adding plot 
titles, text, etc.) all in one single program.
· It is possible to run on multiple datasets. It is even, with something like a PROOF server, possible to run on multiple datasets simultaneously 
with some minor modifications to the framework. This was a huge success. The author found that it was a feature that was used regularly, but 
only if the multi-dataset running was fairly uninvolved.
· The more complex interaction of two datasets leads to tricky and non-obvious code dependencies due to the nature of the Future construct. 
Indeed, any manipulation of the plots or results are a bit messy. There are programming languages that handle this (e.g. functional ones that 
have extensible monad’s built in). This could even be handled in C# with some sacrifice, but it isn’t clear that it should be. This issue is subtle and 
as yet unresolved.
· The final plot manipulations are painful. Frequently one must do 100’s of iterations, moving text to the left or right by 0.1” or something silly 
like that. This only works if the generation of those plots is fast. Perhaps less than a second or two. However, a typical analysis has 1000’s of 
generated plots and numbers, and it takes real CPU time to determine that no plots needed to be re-run and it was only the end manipulations 
that had to be repeated. This framework did not succeed in this aspect.

Initial Goals:
· Remove as much boiler plate as possible.
· Put everything into a single programming language.
· Encode the multiple steps in an analysis in a single program.
· Enable iterative development of the analysis

Originally motivated by the demands on my time as a professor: how can I quickly generate analysis-grade plots but run over LHC size datasets?
Requirements:
· Must use ROOT files as input (I’m a member of ATLAS!)
· Use C++/native code for the processing loop (speed!)
· Use PROOF (Linux) or run locally with “ease”
· Results should be normal ROOT objects and plots
Stretch Goal:
· Can a plot be self describing?

Data and Analysis Tracking & Preservation:
The author has used electronic log books for over a decade now (OneNote, primarily). As this project evolved, the author realized the following 
scenario was possible: take a jpg/png from the logbook, drag it onto a special program, and have the program dump out the names of the input 
ROOT files and every single thing that happened after that to make the plot.
· As each plot is generated, the complete expression tree is known and in a single place in the program. In fact, it is serialized as a string for a 
cache key. While there is some loss in fidelity—you could not recreate code from this string—it is more than enough to see what cuts were 
made. A serialization of the  actual expression tree is not too difficult (not attempted yet). This is called the query string.
· The input files and datasets are also well known (they are a TChain).
There are a few issues however:
1. The data must be carried along with the plot. Attached to the plot somehow. 
· ROOT’s TH1 doesn’t really have any method to do that (like a “userdata” store). Several ideas were explored. One was to subclass TH1F, and 
the new subclass could store its history. However, opening a ROOT data file containing these special histograms no longer worked correctly 
unless the code had been pre-loaded. This approach was rejected.
· Another was to store the query string in a TObjString along side the plot. The only trick was that the code, as seen above, wants to use a simple 
histogram object—a pair of objects would significantly destroy the usability. So this approach was rejected.
· The current experimental approach is a combination of the two. Use the extended histogram to generate all the plots, and when it is written 
out write out a separate TH1F and a TObjString.
2. Manipulations of the plots in the C# code must be recorded. For example, if you generate an efficiency plot you must divide two plots. So a 
when a call is made to the histogram TH1F::Divide method, it must be recorded. This requires modifying a every single operation and 
manipulation to update the query string and could potentially be quite ugly. The author was saved some trouble because of the Future problem 
mentioned elsewhere. Lots of small utility methods already encapsulated histogram manipulation—only those had to be modified to get around 
this issue. PlotLingowas also created, partly, as an effort to solve this.
3. Finally this must be recorded in the PNG or JPEG or PDF plot. This turns out to be fairly easy. All these image formats (including PDF) allow the 
user to add arbitrary payload to them. Writing code to take a plot and the associated TObjString is not too difficult. The same for the code that 
dumps the result back when an image is dragged onto the program. This additional data increases the size of the image by about a 50% (from 
about 40 KB to 60 KB). One could potentially use DOI’s to shrink it back down, but that comes with its own set of challenges.

Goal: Iterative Development of an Analysis
The main requirement for iterative analysis is being able to make an adjustment to a plot, hit the run key and then be looking at the new plot 
quickly. In general 30 seconds seems to be about when the author starts to be distracted by Facebook. This is most important for running over 
smaller ROOT files (gigabytes). At the same time this can’t get in the way of reasonably efficient running on the large datasets (which is done 
much less frequently). A few features have gone into making sure this works well.
Success:
· If the plot has been made on a previous run and nothing has changed, then a cached version of the plot is used. This is perhaps the largest 
enabler of a quick turn around, and is almost built into the way the problem is solved in this framework. Each plot comes attached with an 
expression tree that details everything from start to finish that is done to the input files to generate the plot. As long as no parameters are 
altered, and the input files haven’t been altered, then the resulting plot must be the same. Input parameters can be a bit tricky to check. For 
example, consider a TH1F that is used to reweight a variable before it is plotted. If that TH1F is changed, then the plot must be remade. So the 
caching must be done carefully. But it isn’t hard. Things are cached on the local system in a local directory. The result is if you have 500 plots in 
your program, and you modify a single one, only that plot is actually run. This can make the difference between hours and minutes for a run.
· Code generated for queries are merged where possible. The key here is if you have 500 plots you want ROOT to loop over the data only once, 
not 500 times. This gets around one of the major limitations of TTree::Draw (one of the inspirations for this work). This is enabled by futures. 
Instead of asking for a Plot, the user asks for a FuturePlot. This is a promise of a plot at some point in the future. After all the promises have 
been accumulated, they can all be combined and run at once.

Failures:
· While the speed up by caching the plots is huge, when one gets up to 1000 plots or so just the time it takes to generate the cache lookups 
starts to become prohibitive—longer than 30 seconds in total. Some of the queries can be quite complex—leading to very long expression trees 
that must be compared. Some work has gone into optimizing this step. This is another area of active development—it is not yet well understood 
what is so expensive about this operation. 
· If plots need to be manipulated—say divided to get a ratio or similar, the place this makes the most sense is right after the plots are generated. 
However, with Futures in the mix this isn’t trivial any longer. When one wants to do the division there aren’t actual plots to divide yet! There are 
ways around this, but they significantly obscure the code, significantly damaging one of the goals of this approach.

Conclusions:
· Declarative programing is superior to the standard imperative for the analysis tasks done by the author.
· There are lots of small friction points in the current tool set. Some due to Windows (HEP is Linux), some due to the nature of leaky 
abstractions, some due to ROOT, and some due to declarative programming.
· The ability to track and carry meta-data with the final plots is very interesting, but not yet fully explored.
· Where next? ATLAS is going through a major rework of its EDM, will have to see how hard that is to incorporate.
· Great deal isn’t covered here (e.g. code optimization!)

Iterative



1 Make a plot over a 20 GB file

2 Get confused by the results

3 Make a second plot to understand the first

4 Soon you have 500 plots



1 Make a plot over a 20 GB file

2 Get confused by the results

3 Make a second plot to understand the first

4 Soon you have 500 plots
Adding the 501st plot to understand the 

500th plot should take no more time than 
that first plot!



Adding the 501st plot to understand the 
500th plot should take no more time than 

that first plot!

Solution: Cache plots between runs!

var ptRangePlot = rangeJets
.Select(j => j.Jet )
. FuturePlot ( EDMPlot.SpPtPlot , "Restricted" )
.Save( outputFolder );

FuturePlot knows everything!
Due to some nifty language features of C#!

Cache key!



Solution: Cache plots between runs!

Perhaps most successful aspect

Reduced a 6 hour run to a 10 minute run!

BUT:
Cache lookups for 500 plots still takes too long!

Failed when it came to the iterative process of plot formatting!



There has to be a better way.
Modern HEP analysis of ROOT TTrees has... 
· too much hand-art,
· too much boilerplate,
· not reproducible enough,
· isn’t developed iteratively,
· isn't faster enough!
A modern HEP analysis requires many scripts, running on the GRID, use of experiment-validated ROOT TTree datasets that are very large… 
Most of us code this up in multiple steps, adding to a Franken monster as we go. Rerunning is error prone because many of the steps must be 
done by hand, in a specific order, often with hand editing between. And adding a new plot can take hours because it requires remaking all the 
old plots on a large dataset. Surely we can do better than this in the modern era of distributed computing, sophisticated programming 
languages, build bots, and all the other modern software that has sprouted since we invented the analysis chain!

Personally, I need this. I’m a professor and my duty cycle is low. It is even more likely that I will forget a setup than one of my students or 
postdocs. What I present here isn’t a complete solution, but represents experiments I’ve done in an attempt to solve this problem for myself.

This Solution:
1. Declarative Programming
2. Plot provenance for tracking and caching
3. TeamCity BuildServer
This poster is mostly about the declarative programming aspec, which enables plot provenance and caching, and which is by far the most 
complex component of this set of analysis tools.

Real World Use:
Most of the lessons and measurements of success and failure come from one analysis performed by the author using this framework. The 
recently released search for Hidden Valley particles in the calorimeter had a part of the background study done in this framework. The general 
experience: coding the physics and the selection was much faster than anything done previously. For the analysis see 
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-041/

Some interesting facts about the code for this analysis:
· Two projects were written. One to calculate the background and one to explore correlations between two jets of various analysis variables. It 
did not feel natural to put everything in a single analysis program.
· Data and MC ntuples were different, which made using them with common code difficult (C# is strongly typed, so needs to know the layout of 
the TTree at compile time). A common event data model was built to get around this complication. The expression tree translation shouldhave 
removed all evidence of this in the generated C++ code, though this was not carefully examined.
· The library that handles the main analysis cuts, the EDM translation, MC/reconstruction object matching, etc, is 350 lines of code. In the 
analysis the function with the most lines of code is just making many plots with few logic decisions

Besides problems mentioned elsewhere in this poster, there were some issues encountered:
· The experiment is moving towards standard tools which depend on data files and libraries, making it much harder to make this a cross platform 
analysis.
C# is strongly typed, so a TTree’s layout must be well known in advance. The tools to do this scanning are not friction free.
The function Where has a special (magic) signature:

IQueriable<Jet> Where<Jet> (
IQueriable<Jet> sourceSequence,
Expression<Func<Jet,bool>> test);

The Expression<> type tells the compiler not to pass the value of the expression, but an expression tree that represents the expression. Thus the 
Where function gets passed an expression tree—a data-structure that can be examined by the low level library… and be converted into C++ 
code (or anything else)!!

Extras:
Because the C++ translator gets a completely specified expression tree it can be manipulated directly by that code. This allows for a surprising 
amount of flexibility.
· Most ROOT TTree’s in ATLAS are flat, not objects, but arrays of floating point numbers. For example, the information for a jet might be spread 
across several arrays (eta, phi, pT, etc.). Though possible to use with this tool, it isn’t very convenient. A dummy jet object can be created, with 
members eta, phi, and pT. During the expression tree translation phase this dummy jet object can be translated into direct array accesses.
· Sometimes the only way is real C++ code. This happens most often because the ROOT API isn’t functional. The most common example seen in 
code is the TLorentzVector. It is possible to embed C++ code in the C# file and have the translator slip it directly into the C++ file.
· Functions like Math::Abs can be translated directly to C++’s fabs using a simple configuration lookup (which the user can add to if they wish).
· The backend is pluggable. There are currently two working: PROOF server (on Linux) and run locally on your Windows computer. The author 
wouldn’t claim writing a new backend was trivial, but it is far simpler than the C++ emitter or the expression tree transformation code.

Limitations:
· The main limitation is the inability to include functions in the expressions. For example, it would be nice to create a goodJet function, and then 
use it all over the code. Unfortunately, the most obvious way of doing this means that the goodJet function is not an expression tree, but 
compiled code. This can’t be translated by the C++ emitter code. By specially declaring goodJet it is possible to get around this, and the 
expression tree translator will work around this, but this is an advanced use of the framework and isn’t totally simple, unfortunately. Here is an 
example that creates an expression to cut on the electromagnetic fraction (EMF) and the nmber of tracks (ntrack). The line after the function 
shows how it is used in the code:

Put everything into a single programming language:
The original goal of this project was to do everything from running on multiple initial datasets to final plot manipulations (including adding plot 
titles, text, etc.) all in one single program.
· It is possible to run on multiple datasets. It is even, with something like a PROOF server, possible to run on multiple datasets simultaneously 
with some minor modifications to the framework. This was a huge success. The author found that it was a feature that was used regularly, but 
only if the multi-dataset running was fairly uninvolved.
· The more complex interaction of two datasets leads to tricky and non-obvious code dependencies due to the nature of the Future construct. 
Indeed, any manipulation of the plots or results are a bit messy. There are programming languages that handle this (e.g. functional ones that 
have extensible monad’s built in). This could even be handled in C# with some sacrifice, but it isn’t clear that it should be. This issue is subtle and 
as yet unresolved.
· The final plot manipulations are painful. Frequently one must do 100’s of iterations, moving text to the left or right by 0.1” or something silly 
like that. This only works if the generation of those plots is fast. Perhaps less than a second or two. However, a typical analysis has 1000’s of 
generated plots and numbers, and it takes real CPU time to determine that no plots needed to be re-run and it was only the end manipulations 
that had to be repeated. This framework did not succeed in this aspect.

Initial Goals:
· Remove as much boiler plate as possible.
· Put everything into a single programming language.
· Encode the multiple steps in an analysis in a single program.
· Enable iterative development of the analysis

Originally motivated by the demands on my time as a professor: how can I quickly generate analysis-grade plots but run over LHC size datasets?
Requirements:
· Must use ROOT files as input (I’m a member of ATLAS!)
· Use C++/native code for the processing loop (speed!)
· Use PROOF (Linux) or run locally with “ease”
· Results should be normal ROOT objects and plots
Stretch Goal:
· Can a plot be self describing?

Data and Analysis Tracking & Preservation:
The author has used electronic log books for over a decade now (OneNote, primarily). As this project evolved, the author realized the following 
scenario was possible: take a jpg/png from the logbook, drag it onto a special program, and have the program dump out the names of the input 
ROOT files and every single thing that happened after that to make the plot.
· As each plot is generated, the complete expression tree is known and in a single place in the program. In fact, it is serialized as a string for a 
cache key. While there is some loss in fidelity—you could not recreate code from this string—it is more than enough to see what cuts were 
made. A serialization of the  actual expression tree is not too difficult (not attempted yet). This is called the query string.
· The input files and datasets are also well known (they are a TChain).
There are a few issues however:
1. The data must be carried along with the plot. Attached to the plot somehow. 
· ROOT’s TH1 doesn’t really have any method to do that (like a “userdata” store). Several ideas were explored. One was to subclass TH1F, and 
the new subclass could store its history. However, opening a ROOT data file containing these special histograms no longer worked correctly 
unless the code had been pre-loaded. This approach was rejected.
· Another was to store the query string in a TObjString along side the plot. The only trick was that the code, as seen above, wants to use a simple 
histogram object—a pair of objects would significantly destroy the usability. So this approach was rejected.
· The current experimental approach is a combination of the two. Use the extended histogram to generate all the plots, and when it is written 
out write out a separate TH1F and a TObjString.
2. Manipulations of the plots in the C# code must be recorded. For example, if you generate an efficiency plot you must divide two plots. So a 
when a call is made to the histogram TH1F::Divide method, it must be recorded. This requires modifying a every single operation and 
manipulation to update the query string and could potentially be quite ugly. The author was saved some trouble because of the Future problem 
mentioned elsewhere. Lots of small utility methods already encapsulated histogram manipulation—only those had to be modified to get around 
this issue. PlotLingowas also created, partly, as an effort to solve this.
3. Finally this must be recorded in the PNG or JPEG or PDF plot. This turns out to be fairly easy. All these image formats (including PDF) allow the 
user to add arbitrary payload to them. Writing code to take a plot and the associated TObjString is not too difficult. The same for the code that 
dumps the result back when an image is dragged onto the program. This additional data increases the size of the image by about a 50% (from 
about 40 KB to 60 KB). One could potentially use DOI’s to shrink it back down, but that comes with its own set of challenges.

Goal: Iterative Development of an Analysis
The main requirement for iterative analysis is being able to make an adjustment to a plot, hit the run key and then be looking at the new plot 
quickly. In general 30 seconds seems to be about when the author starts to be distracted by Facebook. This is most important for running over 
smaller ROOT files (gigabytes). At the same time this can’t get in the way of reasonably efficient running on the large datasets (which is done 
much less frequently). A few features have gone into making sure this works well.
Success:
· If the plot has been made on a previous run and nothing has changed, then a cached version of the plot is used. This is perhaps the largest 
enabler of a quick turn around, and is almost built into the way the problem is solved in this framework. Each plot comes attached with an 
expression tree that details everything from start to finish that is done to the input files to generate the plot. As long as no parameters are 
altered, and the input files haven’t been altered, then the resulting plot must be the same. Input parameters can be a bit tricky to check. For 
example, consider a TH1F that is used to reweight a variable before it is plotted. If that TH1F is changed, then the plot must be remade. So the 
caching must be done carefully. But it isn’t hard. Things are cached on the local system in a local directory. The result is if you have 500 plots in 
your program, and you modify a single one, only that plot is actually run. This can make the difference between hours and minutes for a run.
· Code generated for queries are merged where possible. The key here is if you have 500 plots you want ROOT to loop over the data only once, 
not 500 times. This gets around one of the major limitations of TTree::Draw (one of the inspirations for this work). This is enabled by futures. 
Instead of asking for a Plot, the user asks for a FuturePlot. This is a promise of a plot at some point in the future. After all the promises have 
been accumulated, they can all be combined and run at once.

Failures:
· While the speed up by caching the plots is huge, when one gets up to 1000 plots or so just the time it takes to generate the cache lookups 
starts to become prohibitive—longer than 30 seconds in total. Some of the queries can be quite complex—leading to very long expression trees 
that must be compared. Some work has gone into optimizing this step. This is another area of active development—it is not yet well understood 
what is so expensive about this operation. 
· If plots need to be manipulated—say divided to get a ratio or similar, the place this makes the most sense is right after the plots are generated. 
However, with Futures in the mix this isn’t trivial any longer. When one wants to do the division there aren’t actual plots to divide yet! There are 
ways around this, but they significantly obscure the code, significantly damaging one of the goals of this approach.

Conclusions:
· Declarative programing is superior to the standard imperative for the analysis tasks done by the author.
· There are lots of small friction points in the current tool set. Some due to Windows (HEP is Linux), some due to the nature of leaky 
abstractions, some due to ROOT, and some due to declarative programming.
· The ability to track and carry meta-data with the final plots is very interesting, but not yet fully explored.
· Where next? ATLAS is going through a major rework of its EDM, will have to see how hard that is to incorporate.
· Great deal isn’t covered here (e.g. code optimization!)

Repeatability



Every time I checked into the analysis SVN repository:



Build Server to run “official” analysis

Kept continuous record of my changes to 
the analysis and the results!

Only works because analysis time reduced 
from 6 hours to 10 minutes for most 
source code changes!

Everyone’s analysis should be like this! J



There has to be a better way.
Modern HEP analysis of ROOT TTrees has... 
· too much hand-art,
· too much boilerplate,
· not reproducible enough,
· isn’t developed iteratively,
· isn't faster enough!
A modern HEP analysis requires many scripts, running on the GRID, use of experiment-validated ROOT TTree datasets that are very large… 
Most of us code this up in multiple steps, adding to a Franken monster as we go. Rerunning is error prone because many of the steps must be 
done by hand, in a specific order, often with hand editing between. And adding a new plot can take hours because it requires remaking all the 
old plots on a large dataset. Surely we can do better than this in the modern era of distributed computing, sophisticated programming 
languages, build bots, and all the other modern software that has sprouted since we invented the analysis chain!

Personally, I need this. I’m a professor and my duty cycle is low. It is even more likely that I will forget a setup than one of my students or 
postdocs. What I present here isn’t a complete solution, but represents experiments I’ve done in an attempt to solve this problem for myself.

This Solution:
1. Declarative Programming
2. Plot provenance for tracking and caching
3. TeamCity BuildServer
This poster is mostly about the declarative programming aspec, which enables plot provenance and caching, and which is by far the most 
complex component of this set of analysis tools.

Real World Use:
Most of the lessons and measurements of success and failure come from one analysis performed by the author using this framework. The 
recently released search for Hidden Valley particles in the calorimeter had a part of the background study done in this framework. The general 
experience: coding the physics and the selection was much faster than anything done previously. For the analysis see 
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-041/

Some interesting facts about the code for this analysis:
· Two projects were written. One to calculate the background and one to explore correlations between two jets of various analysis variables. It 
did not feel natural to put everything in a single analysis program.
· Data and MC ntuples were different, which made using them with common code difficult (C# is strongly typed, so needs to know the layout of 
the TTree at compile time). A common event data model was built to get around this complication. The expression tree translation shouldhave 
removed all evidence of this in the generated C++ code, though this was not carefully examined.
· The library that handles the main analysis cuts, the EDM translation, MC/reconstruction object matching, etc, is 350 lines of code. In the 
analysis the function with the most lines of code is just making many plots with few logic decisions

Besides problems mentioned elsewhere in this poster, there were some issues encountered:
· The experiment is moving towards standard tools which depend on data files and libraries, making it much harder to make this a cross platform 
analysis.
C# is strongly typed, so a TTree’s layout must be well known in advance. The tools to do this scanning are not friction free.
The function Where has a special (magic) signature:

IQueriable<Jet> Where<Jet> (
IQueriable<Jet> sourceSequence,
Expression<Func<Jet,bool>> test);

The Expression<> type tells the compiler not to pass the value of the expression, but an expression tree that represents the expression. Thus the 
Where function gets passed an expression tree—a data-structure that can be examined by the low level library… and be converted into C++ 
code (or anything else)!!

Extras:
Because the C++ translator gets a completely specified expression tree it can be manipulated directly by that code. This allows for a surprising 
amount of flexibility.
· Most ROOT TTree’s in ATLAS are flat, not objects, but arrays of floating point numbers. For example, the information for a jet might be spread 
across several arrays (eta, phi, pT, etc.). Though possible to use with this tool, it isn’t very convenient. A dummy jet object can be created, with 
members eta, phi, and pT. During the expression tree translation phase this dummy jet object can be translated into direct array accesses.
· Sometimes the only way is real C++ code. This happens most often because the ROOT API isn’t functional. The most common example seen in 
code is the TLorentzVector. It is possible to embed C++ code in the C# file and have the translator slip it directly into the C++ file.
· Functions like Math::Abs can be translated directly to C++’s fabs using a simple configuration lookup (which the user can add to if they wish).
· The backend is pluggable. There are currently two working: PROOF server (on Linux) and run locally on your Windows computer. The author 
wouldn’t claim writing a new backend was trivial, but it is far simpler than the C++ emitter or the expression tree transformation code.

Limitations:
· The main limitation is the inability to include functions in the expressions. For example, it would be nice to create a goodJet function, and then 
use it all over the code. Unfortunately, the most obvious way of doing this means that the goodJet function is not an expression tree, but 
compiled code. This can’t be translated by the C++ emitter code. By specially declaring goodJet it is possible to get around this, and the 
expression tree translator will work around this, but this is an advanced use of the framework and isn’t totally simple, unfortunately. Here is an 
example that creates an expression to cut on the electromagnetic fraction (EMF) and the nmber of tracks (ntrack). The line after the function 
shows how it is used in the code:

Put everything into a single programming language:
The original goal of this project was to do everything from running on multiple initial datasets to final plot manipulations (including adding plot 
titles, text, etc.) all in one single program.
· It is possible to run on multiple datasets. It is even, with something like a PROOF server, possible to run on multiple datasets simultaneously 
with some minor modifications to the framework. This was a huge success. The author found that it was a feature that was used regularly, but 
only if the multi-dataset running was fairly uninvolved.
· The more complex interaction of two datasets leads to tricky and non-obvious code dependencies due to the nature of the Future construct. 
Indeed, any manipulation of the plots or results are a bit messy. There are programming languages that handle this (e.g. functional ones that 
have extensible monad’s built in). This could even be handled in C# with some sacrifice, but it isn’t clear that it should be. This issue is subtle and 
as yet unresolved.
· The final plot manipulations are painful. Frequently one must do 100’s of iterations, moving text to the left or right by 0.1” or something silly 
like that. This only works if the generation of those plots is fast. Perhaps less than a second or two. However, a typical analysis has 1000’s of 
generated plots and numbers, and it takes real CPU time to determine that no plots needed to be re-run and it was only the end manipulations 
that had to be repeated. This framework did not succeed in this aspect.

Initial Goals:
· Remove as much boiler plate as possible.
· Put everything into a single programming language.
· Encode the multiple steps in an analysis in a single program.
· Enable iterative development of the analysis

Originally motivated by the demands on my time as a professor: how can I quickly generate analysis-grade plots but run over LHC size datasets?
Requirements:
· Must use ROOT files as input (I’m a member of ATLAS!)
· Use C++/native code for the processing loop (speed!)
· Use PROOF (Linux) or run locally with “ease”
· Results should be normal ROOT objects and plots
Stretch Goal:
· Can a plot be self describing?

Data and Analysis Tracking & Preservation:
The author has used electronic log books for over a decade now (OneNote, primarily). As this project evolved, the author realized the following 
scenario was possible: take a jpg/png from the logbook, drag it onto a special program, and have the program dump out the names of the input 
ROOT files and every single thing that happened after that to make the plot.
· As each plot is generated, the complete expression tree is known and in a single place in the program. In fact, it is serialized as a string for a 
cache key. While there is some loss in fidelity—you could not recreate code from this string—it is more than enough to see what cuts were 
made. A serialization of the  actual expression tree is not too difficult (not attempted yet). This is called the query string.
· The input files and datasets are also well known (they are a TChain).
There are a few issues however:
1. The data must be carried along with the plot. Attached to the plot somehow. 
· ROOT’s TH1 doesn’t really have any method to do that (like a “userdata” store). Several ideas were explored. One was to subclass TH1F, and 
the new subclass could store its history. However, opening a ROOT data file containing these special histograms no longer worked correctly 
unless the code had been pre-loaded. This approach was rejected.
· Another was to store the query string in a TObjString along side the plot. The only trick was that the code, as seen above, wants to use a simple 
histogram object—a pair of objects would significantly destroy the usability. So this approach was rejected.
· The current experimental approach is a combination of the two. Use the extended histogram to generate all the plots, and when it is written 
out write out a separate TH1F and a TObjString.
2. Manipulations of the plots in the C# code must be recorded. For example, if you generate an efficiency plot you must divide two plots. So a 
when a call is made to the histogram TH1F::Divide method, it must be recorded. This requires modifying a every single operation and 
manipulation to update the query string and could potentially be quite ugly. The author was saved some trouble because of the Future problem 
mentioned elsewhere. Lots of small utility methods already encapsulated histogram manipulation—only those had to be modified to get around 
this issue. PlotLingowas also created, partly, as an effort to solve this.
3. Finally this must be recorded in the PNG or JPEG or PDF plot. This turns out to be fairly easy. All these image formats (including PDF) allow the 
user to add arbitrary payload to them. Writing code to take a plot and the associated TObjString is not too difficult. The same for the code that 
dumps the result back when an image is dragged onto the program. This additional data increases the size of the image by about a 50% (from 
about 40 KB to 60 KB). One could potentially use DOI’s to shrink it back down, but that comes with its own set of challenges.

Goal: Iterative Development of an Analysis
The main requirement for iterative analysis is being able to make an adjustment to a plot, hit the run key and then be looking at the new plot 
quickly. In general 30 seconds seems to be about when the author starts to be distracted by Facebook. This is most important for running over 
smaller ROOT files (gigabytes). At the same time this can’t get in the way of reasonably efficient running on the large datasets (which is done 
much less frequently). A few features have gone into making sure this works well.
Success:
· If the plot has been made on a previous run and nothing has changed, then a cached version of the plot is used. This is perhaps the largest 
enabler of a quick turn around, and is almost built into the way the problem is solved in this framework. Each plot comes attached with an 
expression tree that details everything from start to finish that is done to the input files to generate the plot. As long as no parameters are 
altered, and the input files haven’t been altered, then the resulting plot must be the same. Input parameters can be a bit tricky to check. For 
example, consider a TH1F that is used to reweight a variable before it is plotted. If that TH1F is changed, then the plot must be remade. So the 
caching must be done carefully. But it isn’t hard. Things are cached on the local system in a local directory. The result is if you have 500 plots in 
your program, and you modify a single one, only that plot is actually run. This can make the difference between hours and minutes for a run.
· Code generated for queries are merged where possible. The key here is if you have 500 plots you want ROOT to loop over the data only once, 
not 500 times. This gets around one of the major limitations of TTree::Draw (one of the inspirations for this work). This is enabled by futures. 
Instead of asking for a Plot, the user asks for a FuturePlot. This is a promise of a plot at some point in the future. After all the promises have 
been accumulated, they can all be combined and run at once.

Failures:
· While the speed up by caching the plots is huge, when one gets up to 1000 plots or so just the time it takes to generate the cache lookups 
starts to become prohibitive—longer than 30 seconds in total. Some of the queries can be quite complex—leading to very long expression trees 
that must be compared. Some work has gone into optimizing this step. This is another area of active development—it is not yet well understood 
what is so expensive about this operation. 
· If plots need to be manipulated—say divided to get a ratio or similar, the place this makes the most sense is right after the plots are generated. 
However, with Futures in the mix this isn’t trivial any longer. When one wants to do the division there aren’t actual plots to divide yet! There are 
ways around this, but they significantly obscure the code, significantly damaging one of the goals of this approach.

Conclusions:
· Declarative programing is superior to the standard imperative for the analysis tasks done by the author.
· There are lots of small friction points in the current tool set. Some due to Windows (HEP is Linux), some due to the nature of leaky 
abstractions, some due to ROOT, and some due to declarative programming.
· The ability to track and carry meta-data with the final plots is very interesting, but not yet fully explored.
· Where next? ATLAS is going through a major rework of its EDM, will have to see how hard that is to incorporate.
· Great deal isn’t covered here (e.g. code optimization!)

What did I do?



Plot manipulation at the end was complex!

ROOT’s API is not well suited to plot manipulation

(it is 100% capable)

PlotLingo
f = teamcity ("http://tc - higgs.phys.washington.edu:8080/repository/download/ Atlas_HvMcCompareCi/2362:id/ CalRatioScan.root
mc = {

JZ1 => f.Get ("dataJZ1W/EF_J15/ ProbeJet / JetPtProbe "),
JZ2 => f.Get ("dataJZ2W/EF_J15/ ProbeJet / JetPtProbe "),
JZ3 => f.Get ("dataJZ3W/EF_J15/ ProbeJet / JetPtProbe "),
JZ4 => f.Get ("dataJZ4W/EF_J15/ ProbeJet / JetPtProbe ")

};
mc
.sum()
.plot();

Å Sums 4 histograms, plots them nicely
Å Automatically makes legends
Å Etc.



PlotLingo

Side benefit: birth to death tracking of what goes into a plot!

Work in progress:
ÅWrite everything every thing to jpg EXIF data!
Å Small program that will dump everything to the screen!

Can do this for each individual step so far…



Extreme Alpha Quality

Lesson: It is now easyto write a small 
programming language

I’m a professor. If I can do this so can you!



Thanks for your vote!

… and thanks to the conference organizers

See talk “Native Language Integrated Queries with CppLINQ in C++” 
by V. Vasilev for a C++ version


