
FileInfo rootFile = new FileInfo(@"..\..\..\output.root"); 
var rf1 = Queryablebtag.Create(rootFile); 
 
int count = rf1.Count(); 
Console.WriteLine("The number of events in the ntuple is {0}.", count); 
 
var alljets = from e in rf1 
              from j in e.jets 
              select j; 
 
var hpt = alljets.Plot(“pTAllJets”, “pT for all jets; pT [GeV]”, 50, 0.0, 150.0, j => j.Pt() / 1000.0); 
 
var goodjets = from j in alljets 
               where j.Pt()/1000.0 > 30.0 && TMath::Abs(j.Eta()) < 2.0 
               select j; 
 
var hptGood = alljets.Plot(“pTGoodJets”, “pT for Good jets; pT [GeV]”, 50, 0.0, 150.0, j => j.Pt() / 1000.0); 
 
var f = ROOTNET.NTFile.Open(“junk.root”, “RECREATE”); 
htp.SetDirectory(f); 
hptGood.SetDirectory(f); 
f.Write(); 
f.Close(); 

Open the file, connect to the b-tag TTree 

Run through the TTree and count the number of 

entries in the TTree. 

Each entry in the TTree has a collection of jets. 

Alljets is just a list of every single jet in the out-

put.root file. 

Make a plot of the pT of all the jets in units of 

GeV. htp now points to a TH1F. 

Make a new list of all jets in the file, but only 

those that have pT > 30 GeV and |eta| < 2.0 

Write the plots to the junk.root file. 

Initial Goals: 

 Remove as much boiler plate as possible. 

 Put everything into a single programming language. 

 Encode the multiple steps in an analysis in a single program. 

 Enable iterative development of the analysis 

Originally motivated by the demands on my time as a professor: how can I quickly generate 

analysis-grade plots but run over LHC size datasets? 

Requirements: 

 Must use ROOT files as input (I’m a member of ATLAS!) 

 Use C++/native code for the processing loop (speed!) 

 Use PROOF (Linux) or run locally with “ease” 

 Results should be normal ROOT objects and plots 

Stretch Goal: 

 Can a plot be self describing? 

50/50 Success 

Much Improved 

Success 

Much Improved 

In Progress 

How does it work? 

var alljets = from e in rf1 
              from j in e.jets 
              select j; 
 
var goodjets = from j in alljets 
               where j.Pt()/1000.0 > 30.0 && Math::Abs(j.Eta()) < 2.0 
               select j; 

var goodjets = rf1 
 .SelectMany(e => e.jets) 
 .Where(j => j.Pt().1000.0 > 30.0 && TMath::Abs(j.Eta()) < 2.0)) 

The compiler translates the syntactic sugar 

of LINQ into this equivalent functional form. 

C# Lambda Expression 

The function Where has a special (magic) signature: 

 

 IQueriable<Jet> Where<Jet> ( 

  IQueriable<Jet> sourceSequence, 

  Expression<Func<Jet,bool>> test); 

 

The Expression<> type tells the compiler not to pass the value of 

the expression, but an expression tree that represents the expres-

sion. Thus the Where function gets passed an expression tree—a 

data-structure that can be examined by the low level library… and 

be converted into C++ code (or anything else)!! 

1.The analysis code has implied loops over the events, over jets, etc., as shown above. The variable “goodjets” will 

represent a sequence of all jets in the input file rf1 that have a pT > 10 GeV and an eta less than 2.0. 

2.The compiler translates the syntactic sugar into a functional call shown at right. Often the analyzer will prefer to 

write directly in the functional form. 

3.Each argument to a function, like Where, is actually an expression tree, not a compiled Lambda expression (as it 

appears to be). This means the underlying library can manipulate those expression trees. 

4.Backend code can translate the expression sequence into C++ code, and wrap it with the standard ROOT C++ TSe-

lector boilerplate. 

Extras: 

Because the C++ translator gets a completely specified expression tree it can be manipulated directly by that code. This allows for a sur-

prising amount of flexibility. 

 Most ROOT TTree’s in ATLAS are flat, not objects, but arrays of floating point numbers. For example, the information for a jet might be 

spread across several arrays (eta, phi, pT, etc.). Though possible to use with this tool, it isn’t very convenient. A dummy jet object can be 

created, with members eta, phi, and pT. During the expression tree translation phase this dummy jet object can be translated into direct 

array accesses. 

 Sometimes the only way is real C++ code. This happens most often because the ROOT API isn’t functional. The most common example 

seen in code is the TLorentzVector. It is possible to embed C++ code in the C# file and have the translator slip it directly into the C++ file. 

 Functions like Math::Abs can be translated directly to C++’s fabs using a simple configuration lookup (which the user can add to if they 

wish). 

 The backend is pluggable. There are currently two working: PROOF server (on Linux) and run locally on your Windows computer. The au-

thor wouldn’t claim writing a new backend was trivial, but it is far simpler than the C++ emitter or the expression tree transformation 

code. 

private static Expression<Func<double, int, bool>> GenerateCellWindowExpression(CellRangeResults cell) 

{ 

    Expression<Func<double, int, bool>> cut = (emf, ntrack) => emf >= cell._emf._low && emf < cell._emf._high 

        && ntrack >= cell._t._low && ntrack < cell._t._high; 

    return cut; 
} 
 
 
 
Usage: 

    var emfRangeJets = matchedTruthJets 
        .Where(j => cut.Invoke(j.Jet.EMF, j.Jet.nTracks)); 

Data and Analysis Tracking & Preservation: 

The author has used electronic log books for over a decade now 

(OneNote, primarily). As this project evolved, the author realized 

the following scenario was possible: take a jpg/png from the log-

book, drag it onto a special program, and have the program dump 

out the names of the input ROOT files and every single thing that 

happened after that to make the plot. 

 As each plot is generated, the complete expression tree is known 

and in a single place in the program. In fact, it is serialized as a 

string for a cache key. While there is some loss in fidelity—you 

could not recreate code from this string—it is more than enough 

to see what cuts were made. A serialization of the  actual expres-

sion tree is not too difficult (not attempted yet). This is called the 

query string. 

 The input files and datasets are also well known (they are a 

TChain). 

There are a few issues however: 

1. The data must be carried along with the plot. Attached to the plot 

somehow.  

 ROOT’s TH1 doesn’t really have any method to do that (like a 

“userdata” store). Several ideas were explored. One was to 

subclass TH1F, and the new subclass could store its history. 

However, opening a ROOT data file containing these special 

histograms no longer worked correctly unless the code had 

been pre-loaded. This approach was rejected. 

 Another was to store the query string in a TObjString along 

side the plot. The only trick was that the code, as seen above, 

wants to use a simple histogram object—a pair of objects 

would significantly destroy the usability. So this approach was 

rejected. 

 The current ex-

perimental ap-

proach is a com-

bination of the 

two. Use the ex-

tended histo-

gram to generate 

all the plots, and 

when it is written 

out write out a 

separate TH1F 

and a TObjString. 

2. Manipulations of the plots in the C# code must be recorded. For 

example, if you generate an efficiency plot you must divide two 

plots. So a when a call is made to the histogram TH1F::Divide meth-

od, it must be recorded. This requires modifying a every single oper-

ation and manipulation to update the query string and could poten-

tially be quite ugly. The author was saved some trouble because of 

the Future problem mentioned elsewhere. Lots of small utility 

methods already encapsulated histogram manipulation—only those 

had to be modified to get around this issue. PlotLingo was also cre-

ated, partly, as an effort to solve this. 

3. Finally this must be recorded in the PNG or JPEG or PDF plot. This 

turns out to be fairly easy. All these image formats (including PDF) 

allow the user to add arbitrary payload to them. Writing code to 

take a plot and the associated TObjString is not too difficult. The 

same for the code that dumps the result back when an image is 

dragged onto the program. This additional data increases the size of 

the image by about a 50% (from about 40 KB to 60 KB). One could 

potentially use DOI’s to shrink it back down, but that comes with its 

own set of challenges. 

Goal: Iterative Development of an Analysis 

The main requirement for iterative analysis is being able to make an adjustment to a plot, hit the run key 

and then be looking at the new plot quickly. In general 30 seconds seems to be about when the author starts 

to be distracted by Facebook. This is most important for running over smaller ROOT files (gigabytes). At the 

same time this can’t get in the way of reasonably efficient running on the large datasets (which is done 

much less frequently). A few features have gone into making sure this works well. 

Success: 

 If the plot has been made on a previous run and nothing has changed, then a cached version of the plot is 

used. This is perhaps the largest enabler of a quick turn around, and is almost built into the way the prob-

lem is solved in this framework. Each plot comes attached with an expression tree that details everything 

from start to finish that is done to the input files to generate the plot. As long as no parameters are al-

tered, and the input files haven’t been altered, then the resulting plot must be the same. Input parameters 

can be a bit tricky to check. For example, consider a TH1F that is used to reweight a variable before it is 

plotted. If that TH1F is changed, then the plot must be remade. So the caching must be done carefully. But 

it isn’t hard. Things are cached on the local system in a local directory. The result is if you have 500 plots in 

your program, and you modify a single one, only that plot is actually run. This can make the difference be-

tween hours and minutes for a run. 

 Code generated for queries are merged where possible. The key here is if you have 500 plots you want 

ROOT to loop over the data only once, not 500 times. This gets around one of the major limitations of 

TTree::Draw (one of the inspirations for this work). This is enabled by futures. Instead of asking for a Plot, 

the user asks for a FuturePlot. This is a promise of a plot at some point in the future. After all the promises 

have been accumulated, they can all be combined and run at once. 

 

Failures: 

 While the speed up by caching the plots is huge, when one gets up to 1000 plots or so just the time it 

takes to generate the cache lookups starts to become prohibitive—longer than 30 seconds in total. Some 

of the queries can be quite complex—leading to very long expression trees that must be compared. Some 

work has gone into optimizing this step. This is another area of active development—it is not yet well un-

derstood what is so expensive about this operation.  

 If plots need to be manipulated—say divided to get a ratio or similar, the place this makes the most sense 

is right after the plots are generated. However, with Futures in the mix this isn’t trivial any longer. When 

one wants to do the division there aren’t actual plots to divide yet! There are ways around this, but they 

significantly obscure the code, significantly damaging one of the goals of this approach. 

Encode the multiple steps in an analysis in a single program: 

A typical sequence is to make the same histogram from a MC file and a data file, divide the results, and then use 

that ratio as a reweighting to run on the MC file. In a traditional analysis this is a three step process: scripts to submit 

a job on the data and MC files, then a script to divide the histograms, and then a script to re-run on the data file. 

This code can easily be expressed in one file, and in a concise way. For example: 

var ptRangePlot = rangeJets 

                  .Select(j => j.Jet) 

                  .FuturePlot(EDMPlot.SpPtPlot, "Restricted" + namemodifier) 

                  .Save(outputFolder); 

var ptw = ptRangePlot.Value; 

var weightedJetCount = (from j in matchedTruthJets 

                       let iBin = ptw.FindBin(j.Jet.c.Pt()) 

                       let wt = ptw.GetBinContent(iBin) 

                       select wt).FutureAggregate(0.0, (acc, val) => acc + val); 

Put everything into a single programming language: 

The original goal of this project was to do everything from running on multi-

ple initial datasets to final plot manipulations (including adding plot titles, 

text, etc.) all in one single program. 

 It is possible to run on multiple datasets. It is even, with something like a 

PROOF server, possible to run on multiple datasets simultaneously with 

some minor modifications to the framework. This was a huge success. The 

author found that it was a feature that was used regularly, but only if the 

multi-dataset running was fairly uninvolved. 

 The more complex interaction of two datasets leads to tricky and non-

obvious code dependencies due to the nature of the Future construct. In-

deed, any manipulation of the plots or results are a bit messy. There are 

programming languages that handle this (e.g. functional ones that have ex-

tensible monad’s built in). This could even be handled in C# with some sac-

rifice, but it isn’t clear that it should be. This issue is subtle and as yet unre-

solved. 

 The final plot manipulations are painful. Frequently one must do 100’s of it-

erations, moving text to the left or right by 0.1” or something silly like that. 

This only works if the generation of those plots is fast. Perhaps less than a 

second or two. However, a typical analysis has 1000’s of generated plots 

and numbers, and it takes real CPU time to determine that no plots needed 

to be re-run and it was only the end manipulations that had to be repeated. 

This framework did not succeed in this aspect. 

PlotLingo: 

A new plotting language, in the extreme alpha stage, invented initially to quickly solve the last mile problem with making plots 

quickly. However, it also has potential to help solve some of the issues around the tracking and preservation. It is an interpret-

ed language, functional, with lots of hooks for extensibility. The core is very simple. It is not built for speed (e.g. running 

1000’s of plots), but it is built for being able to quickly create a nicely formatted plot or four. 
f = teamcity("http://tc-higgs.phys.washington.edu:8080/repository/download/Atlas_HvMcCompareCi/2362:id/CalRatioScan.root"); 
 
mc = { 
 JZ1 => f.Get("dataJZ1W/EF_J15/ProbeJet/JetPtProbe"), 
 JZ2 => f.Get("dataJZ2W/EF_J15/ProbeJet/JetPtProbe"), 
 JZ3 => f.Get("dataJZ3W/EF_J15/ProbeJet/JetPtProbe"), 
 JZ4 => f.Get("dataJZ4W/EF_J15/ProbeJet/JetPtProbe") 
 }; 
 
mc 
  .sum() 
  .plot(); 

Analysis by Build Server: 

A build bot is a very simple program. It sits up in the cloud somewhere watching a svn or a git or similar repository. Every time 

it sees a check in, it extracts the changes and runs a set of commands. It keeps a log file, and archives any output files you de-

sire from the process (e.g. a ROOT file). 

Analysis by build bot is simply that. The analysis runs each time you check something into source control. It is always run in a 

carefully controlled environment. There can be no hand-art in the making of the results. Because re-running the framework is 

cheap when adding one or two plots, running this in a build bot works quite well. This method was used with the TeamCity 

build bot for an analysis. Being able to go back to previous versions at any time and collect the plots was golden. 

Real World Use: 

Most of the lessons and measurements of success and failure 

come from one analysis performed by the author using this 

framework. The recently released search for Hidden Valley parti-

cles in the calorimeter had a part of the background study done 

in this framework. The general experience: coding the physics 

and the selection was much faster than anything done previous-

ly. For the analysis see https://atlas.web.cern.ch/Atlas/GROUPS/

PHYSICS/CONFNOTES/ATLAS-CONF-2014-041/ 

 

Some interesting facts about the code for this analysis: 

 Two projects were written. One to calculate the background 

and one to explore correlations between two jets of various 

analysis variables. It did not feel natural to put everything in a 

single analysis program. 

 Data and MC ntuples were different, which made using them 

with common code difficult (C# is strongly typed, so needs to 

know the layout of the TTree at compile time). A common 

event data model was built to get around this complication. 

The expression tree translation should have removed all evi-

dence of this in the generated C++ code, though this was not 

carefully examined. 

 The library that handles the main analysis cuts, the EDM trans-

lation, MC/reconstruction object matching, etc, is 350 lines of 

code. In the analysis the function with the most lines of code is 

just making many plots with few logic decisions 

 

Besides problems mentioned elsewhere in this poster, there 

were some issues encountered: 

 The experiment is moving towards standard tools which de-

pend on data files and libraries, making it much harder to make 

this a cross platform analysis. 

 C# is strongly typed, so a TTree’s layout must be well known in 

advance. The tools to do this scanning are not friction free. 

There has to be a better way. 
Modern HEP analysis of ROOT TTrees has...  

 too much hand-art, 

 too much boilerplate, 

 not reproducible enough, 

 isn’t developed iteratively, 

 isn't faster enough! 

A modern HEP analysis requires many scripts, running on the GRID, use of experiment-

validated ROOT TTree datasets that are very large… Most of us code this up in multiple steps, 

adding to a Franken monster as we go. Rerunning is error prone because many of the steps 

must be done by hand, in a specific order, often with hand editing between. And adding a new 

plot can take hours because it requires remaking all the old plots on a large dataset. Surely we 

can do better than this in the modern era of distributed computing, sophisticated program-

ming languages, build bots, and all the other modern software that has sprouted since we in-

vented the analysis chain! 

 

Personally, I need this. I’m a professor and my duty cycle is low. It is even more likely that I 

will forget a setup than one of my students or postdocs. What I present here isn’t a complete 

solution, but represents experiments I’ve done in an attempt to solve this problem for myself. 
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This Solution: 

1.Declarative Programming 

2.Plot provenance for tracking and caching 

3.TeamCity BuildServer 

This poster is mostly about the declarative programming aspec, 

which enables plot provenance and caching, and which is by far 

the most complex component of this set of analysis tools. 

Limitations: 

 The main limitation is the inability to include functions in the expressions. For example, it would be nice to create a goodJet function, and then use it all over the 

code. Unfortunately, the most obvious way of doing this means that the goodJet function is not an expression tree, but compiled code. This can’t be translated 

by the C++ emitter code. By specially declaring goodJet it is possible to get around this, and the expression tree translator will work around this, but this is an ad-

vanced use of the framework and isn’t totally simple, unfortunately. Here is an example that creates an expression to cut on the electromagnetic fraction (EMF) 

and the nmber of tracks (ntrack). The line after the function shows how it is used in the code: 

Conclusions: 

 Declarative programing is superior to the 

standard imperative for the analysis tasks 

done by the author. 

 There are lots of small friction points in the 

current tool set. Some due to Windows 

(HEP is Linux), some due to the nature of 

leaky abstractions, some due to ROOT, and 

some due to declarative programming. 

 The ability to track and carry meta-data 

with the final plots is very interesting, but 

not yet fully explored. 

 Where next? ATLAS is going through a ma-

jor rework of its EDM, will have to see how 

hard that is to incorporate. 

 Great deal isn’t covered here (e.g. code op-

timization!) 

PlotLingo project 

https://plotlingo.codeplex.com/ 

LINQToROOT project 

https://linqtoroot.codeplex.com/ 


