Statistical methods for cosmic ray composition analysis at the Telescope Array Observatory

Grigory Rubtsov, Sergey Troitsky for the Telescope Array collaboration

16th ACAT, Prague September 4, 2014

Telescope Array Collaboration

T. Abu-Zayyad¹ R. Aida² M. Allen¹ R. Anderson¹ R. Azuma³ E. Barcikowski¹ J.W. Belz¹ D.R. Bergman¹ S.A. Blake¹ R. Cady¹ B.G. Cheon⁴ J. Chiba⁵ M. Chikawa⁶ E.J. Cho⁴ W.R. Cho⁷ H. Fujii⁸ T. Fujii⁹ T. Fukuda³ M. Fukushima^{10;11} W. Hanlon¹ K. Hayashi³ Y. Hayashi⁹ N. Hayashida¹⁰ K. Hibino¹² K. Hiyama¹⁰ K. Honda² T. louchi³ D. lkeda¹⁰ K. lkuta² N. Inoue¹³ T. Ishij² R. Ishimori³ D. Ivanov^{1;14} S. Iwamoto² C.C.H. Jui¹ K. Kadota¹⁵ F. Kakimoto³ O. Kalashev¹⁶ T. Kanbe² K. Kasahara¹⁷ H. Kawai¹⁸ S. Kawakami⁹ S. Kawana¹³ E. Kido¹⁰ H.B. Kim⁴ H.K. Kim⁷ J.H. Kim¹ J.H. Kim⁴ K. Kitamoto⁶ S. Kitamura³ Y. Kitamura³ K. Kobayashi⁵ Y. Kobayashi³ Y. Kondo¹⁰ K. Kuramoto⁹ V. Kuzmin¹⁶ Y.J. Kwon⁷ J. Lan¹ S.I. Lim²⁰ S. Machida³ K. Martens¹¹ T. Matsuda⁸ T. Matsuura³ T. Matsuyama⁹ J.N. Matthews¹ M. Minamino⁹ K. Miyata⁵ Y. Murano³ I. Myers¹ K. Nagasawa¹³ S. Nagataki²¹ T. Nakamura²² S.W. Nam²⁰ T. Nonaka¹⁰ S. Ogio⁹ M. Ohnishi¹⁰ H. Ohoka¹⁰ K. Oki¹⁰ D. Oku² T. Okuda²³ A. Oshima⁹ S. Ozawa¹⁷ I.H. Park²⁰ M.S. Pshirkov²⁴ D.C. Rodriguez¹ S.Y. Roh¹⁹ G. Rubtsov¹⁶ D. Rvu¹⁹ H. Sagawa¹⁰ N. Sakurai⁹ A.L. Sampson¹ L.M. Scott¹⁴ P.D. Shah¹ F. Shibata² T. Shibata¹⁰ H. Shimodaira¹⁰ B.K. Shin⁴ J.I. Shin⁷ T. Shirahama¹³ J.D. Smith¹ P. Sokolsky¹ B.T. Stokes¹ S.R. Stratton^{1;14} T. Stroman¹ S. Suzuki⁸ Y. Takahashi¹⁰ M. Takeda¹⁰ A. Taketa²⁵ M. Takita¹⁰ Y. Tameda¹⁰ H. Tanaka⁹ K. Tanaka²⁶ M. Tanaka⁹ S.B. Thomas¹ G.B. Thomson¹ P. Tinyakov^{16;24} I. Tkachev¹⁶ H. Tokuno³ T. Tomida²⁷ S. Troitsky¹⁶ Y. Tsunesada³ K. Tsutsumi³ Y. Tsuyuguchi² Y. Uchihori²⁸ S. Udo¹² H. Ukai² G. Vasilov¹ Y. Wada¹³ T. Wong¹ M. Wood¹ Y. Yamakawa¹⁰ R. Yamane⁹ H. Yamaoka⁸ K. Yamazaki⁹ J. Yang²⁰ Y. Yoneda⁹ S. Yoshida¹⁸ H. Yoshii²⁹ X. Zhou⁶ R. Zollinger¹ Z. Zundel¹

 ¹ University of Utah ² University of Yamanashi ³Tokyo Institute of Technology ⁴Hanyang University ⁵Tokyo University of Science ⁶Kinki University ⁷Yonsei University ⁸KEK ⁹Osaka City University ¹⁰University of Tokyo (ICRR)
 ¹¹ University of Tokyo (Kavli Institute) ¹²Kanagawa University ¹³Saitama University ¹⁴Rutgers University ¹⁵Tokyo City University, ¹⁶Russian Academy of Sciences (INR) ¹⁷Waseda University ¹⁸Chiba University ¹⁹Chungnam National University ²⁰Ewha Womans University ²¹Kyoto University ²²Kochi University ²³Ritsumeikan University ²⁴Universite Libre de Bruxelles ²⁵University of Tokyo (Earthquake Institute) ²⁶Hiroshima City University ²⁷RIKEN ²⁸Japanese National Institute of Radiological Science ²⁹Ehime University

Belgium, Japan, Korea, Russia, USA

Ultra-high-energy cosmic ray experiments $E > 10^{18} \text{ eV}$

Telescope Array Observatory

Largest UHECR statistics in the Northern Hemisphere

- Utah, 2 hrs drive from Salt Lake City
- ► 507 surface detectors, $S = 3m^2$, spacing 1.2 km
- 3 fluorescence detectors
- ▶ 6 years of operation

Telescope Array surface detector

Telescope Array fluorescence detectors

photo by Oleg Kalashev

TA hybrid event example

Triple FD Event (2008-10-26)

► I. Ultra-high-energy cosmic rays (≥ 10¹⁸ eV) composition overview

II. New method for composition study

III. Data set and results

Why primary composition is important?

- understand the physics of the sources
 - acceleration mechanism for bottom-up models
 - top-down: incompatible with heavy
- predict the flux of cosmogenic photons and neutrino
- probe the interaction cross-section at the highest energies
- precision tests of Lorentz-invariance

UHECR $\gtrsim 10^{18}$ eV composition measurements

Experiment	detector	Observable
HiRes	fluorescence stereo	X _{MAX}
Pierre Auger	fluorescence + SD	X _{MAX}
	(hybrid)	
Telescope Array	stereo	X _{MAX}
Telescope Array	hybrid	X _{MAX}
Yakutsk	muon	$ ho_{\mu}$
Pierre Auger	SD	X^{μ}_{MAX}
Pierre Auger	SD	risetime asymmetry

SD – surface detector X_{MAX} – depth of the shower maximum X^{μ}_{MAX} – muon production depth risetime – time from 10% to 50% for the total integrated signal

Composition from the depth of the shower maximum

HiRES

Phys.Rev.Lett.104.161101

Auger

ICRC'2013; Phys.Rev.Lett.104.091101

Telescope Array fluorescence stereo & hybrid

[Telescope Array] JPS'2014, ICRC'2013

TA hotspot, $E > 5.7 \times 10^{19} \,\mathrm{eV}$

TA, ApJ 790 L21 (2014)

- hotspot may be indication of the nearest source

- in this case: size represents deflection in extragalactic and galactic magnetic fields

- composition is important to understand the whole picture

- ► I. Ultra-high-energy cosmic rays (≥ 10¹⁸ eV) composition overview
- II. New method for composition study
- III. Data set and results

- 1. Reconstruct every event, get values of composition-sensitive observables
- 2. Transform the observables
- **3.** Multivariate analysis: $(\mathcal{C}^i_{\alpha}, \mathcal{C}^i_{\beta}, \theta^i) \rightarrow \xi^i$
- **4**. Compare distribution of ξ with Monte-Carlo
- 5. Result: average atomic mass < log A > as a function of energy.

Area over peak - new SD observable

Consider a surface station time-resolved signal

- Both peak and area are well-measured and not much affected by fluctuations
- First introduced by Auger in the context of neutrino search

Phys.Rev.Lett. 100 (2008) 211101

- We calculate AoP for each not-saturated detector with core distance r > 600 m
- We fit AoP(r) with a linear fit:

•
$$AoP(r) = \alpha - \beta(r/r_0 - 1.0)$$

- $r_0 = 1200 \text{ m}, \alpha$ value at 1200 m, β slope
- Both α and β are sensitive to composition

AoP for one detector SD#1522, r = 780 m

- For each event we reconstruct α, β, zenith angle θ and energy E
- α and β depend strongly on θ and E
- The dependence is nonlinear and may not be resolved with simple techniques
- We propose a transformation which remove a significant part of this dependence (α, β) → (C_α, C_β)

Observable transformation

We define the percentile ranks of α and β parameters for proton primaries C_α,C_β:

$$\begin{split} \mathcal{C}^{i}_{\alpha} &= \int\limits_{-\infty}^{\alpha^{i}} f^{i}_{MC,p}(\alpha) \boldsymbol{d}\alpha \,, \\ \mathcal{C}^{i}_{\beta} &= \int\limits_{-\infty}^{\beta^{i}} f^{i}_{MC,p}(\beta) \boldsymbol{d}\beta \,, \end{split}$$

where $f_{MC,p}^{i}(\alpha)$ is an α distribution function for proton Monte-Carlo events compatible by zenith angle with the real event "i".

 α_i , β_i - measured AoP and slope for event "i".

- The values C^i_{α} and C^i_{β} belong to [0,1] by definition.
- The transformation was introduced and successfully applied for TA photon flux limits.

[TA] Phys.Rev. D88 (2013) 112005

MVA analysis

Method:

- Boosted decision trees (TBDT in root)
- Independent MVA forest is constructed for each energy bin, Δ log E = 0.2

Variables:

Training:

- Background: proton MC
- Signal: iron MC

Note. MVA technique is used by Pierre Auger for photon search

Auger, arXiv:1406.2912, ApJ

- ► I. Ultra-high-energy cosmic rays (≥ 10¹⁸ eV) composition overview
- II. New method for composition study
- III. Data set and results

Data collected by TA surface detector: 2008-05-11 — 2013-07-13

Cuts:

- 1. quality cuts used for spectral analysis
- **2**. *θ* < **45**°
- 3. 7 or more detectors triggered
- 4. $E > 10^{18} \text{ eV}$

10242 events after cuts

- CORSIKA with QGSJET-II-03, FLUKA and EGS4.
 Additional set with SIBYLL 2.1.
- Thinning with weight optimisation ($\varepsilon = 10^{-6}$)

Kobal, Astropart. Phys. 15:259,2001

25

Dethinning technique is used

Stokes et al, Astropart. Phys. 35:759,2012

- Detector response is calculated with GEANT sampler
- Same reconstruction code with exactly same cuts is applied to both data and Monte-Carlo sets

Distribution of MVA estimator ξ

Distribution of MVA estimator ξ

Results: Telescope Array SD (MVA) composition

Results comparison: TA SD (MVA) vs TA hybrid

[TA] H.Sagawa, JPS'14

MVA result compared to other experiments

- A new method is proposed for UHECR composition analysis
- ► TA SD five-year composition is presented
- Further sensitivity improvement is required to discriminate between mono and mixed composition

Plan:

- Evolution of method: include additional composition sensitive observables
- Evolution of observatory: array extension TAx4

Thank you for attention!

Backup slides

Auger SD composition

Two composition sensitive SD observables:

muon production height

asymmetry of risetime

[Auger] ICRC'11, arXiv:1107.4804