
A
TL

-D
A

Q
-P

R
O

C
-2

01
4-

02
8

25
Se

pt
em

be
r

20
14

Intelligent operations of the data acquisition system of the
ATLAS experiment at LHC

G Anders, G Avolio, G Lehmann Miotto and L Magnoni

CERN, CH-1211 Geneva, Switzerland

Abstract. The ATLAS experiment at the Large Hadron Collider at CERN relies on a complex
and highly distributed Trigger and Data Acquisition (TDAQ) system to gather and select
particle collision data obtained at unprecedented energy and rates. The Run Control (RC)
system is the component steering the data acquisition by starting and stopping processes and by
carrying all data-taking elements through well-defined states in a coherent way. Taking into
account all the lessons learnt during LHC’s Run 1, the RC has been completely re-designed
and re-implemented during the LHC Long Shutdown 1 (LS1) phase. As a result of the new
design, the RC is assisted by the Central Hint and Information Processor (CHIP) service that
can be truly considered its “brain”. CHIP is an intelligent system able to supervise the ATLAS
data taking, take operational decisions and handle abnormal conditions. In this paper, the
design, implementation and performances of the RC/CHIP system will be described. A
particular emphasis will be put on the way the RC and CHIP cooperate and on the huge
benefits brought by the Complex Event Processing engine. Additionally, some error recovery
scenarios will be analysed for which the intervention of human experts is now rendered
unnecessary.

E-mail: Giuseppe.Avolio@cern.ch Gabriel.Anders@cern.ch

1. Introduction
The Trigger and Data Acquisition (TDAQ) system [1] of the ATLAS detector [2] at the Large Hadron
Collider (LHC) at CERN is composed of a large number of distributed hardware and software
components (about 2000 machines and more than 15000 concurrent processes at the end of LHC’s
Run I) which provide, in a coordinated manner, the data-taking functionality of the overall system.

The Run Control (RC) and the Central Hint and Information Processor (CHIP) are key components
of the Online Software framework that encompasses the software to configure, control and monitor the
TDAQ system. The RC system steers the data acquisition by starting and stopping processes and by
carrying all data-taking elements through well-defined states in a coherent way. Given the size and
complexity of the TDAQ system, errors and failures are bound to happen and must be dealt with. The
data acquisition system has to recover from these errors promptly and effectively, possibly without the
need to stop data taking operations. During LHC Run 1, the detection and handling of problems was
based on an embedded rule-based forward-chaining expert system (CLIPS [3]), which was deeply
integrated with the RC system. Even though the system performed well, it had major disadvantages:
new rules could not be tested without reproducing the error conditions in the production environment
and monitoring of system resources used by specific rules was not possible. This made the
development and debugging of new rules difficult. Additionally, the expert system was lacking the
natural support for detections of temporal patterns.

During the LHC Long Shutdown 1 (LS1) the RC has been completely re-designed and re-implemented
in order to address the problems mentioned beforehand. The new RC is now assisted by the CHIP that
can be truly considered as its “brain”. CHIP is an intelligent application having a global view on the
TDAQ system. It supervises the ATLAS data taking, takes operational decisions and handles
abnormal conditions. Furthermore, CHIP automates complex procedures and performs advanced
recoveries.

2. The Run Control system

2.1. Overview
Applications in the ATLAS TDAQ systems are organized in a tree-like hierarchical structure (the run
control tree, see figure 1) following the functional de-composition into systems and sub-systems of the
ATLAS detector. Each application in the run control tree is managed by a parent Controller. The root
node of the tree is the Root Controller. Controller applications are responsible to keep the system in a
coherent state by starting and stopping their child applications and by sending them the proper
commands needed to reach a state suitable for data-taking. The composition of the run control tree is
completely specified in the TDAQ configuration database [4], where applications and parent/child
relationships are described.

Operations across the run control tree are synchronized using Finite State Machine (FSM)
principles. FSM transitions are usually initiated by the human operator via a graphical user interface:
commands are sent directly to the Root Controller and then automatically propagated throughout the
tree of leaf Controllers. Once an application completes the execution of a command (or changes its
internal status by any reason) it notifies the parent Controller which in this way can evaluate when a
coherent state is reached.

Controller applications are also the RC elements interacting with CHIP. Controllers inform CHIP
about any change in the status of their controlled children. CHIP, in its turn, is able to detect any
anomaly in the system analysing the status of all the applications and can notify the Controllers about
proper actions to be taken. Examples of actions are setting a simple error flag or restarting/ignoring
offending applications.

Controllers are able to supervise applications of any kind: “simple” applications not implementing
RC functionalities are not expected by their Controllers to follow the FSM but are just started and
stopped at the right time (i.e., as described in the configuration database).

Figure 1. Schema of a simple Run Control
tree: the Root Controller (Root CTRL), a
child controller (CTRL), two leaf
applications (APP 1 and APP 2) and CHIP
are shown.

2.2. Communication schema
The communication schema has been designed and implemented starting from the requirement that at
any moment in time each Controller needs to know the state of its children, and that CHIP must have a
complete and coherent view of the status of all the applications in the system. In such a way
Controllers shall be able to determine when a child application has completed the execution of a
command or has been properly started/stopped or has changed its state, and CHIP to detect abnormal
situations and take recovery actions. As a result:

• any child application or Controller shall be able to notify its parent about any status change;
• any Controller shall be able to notify CHIP about any change in its children’s status (the Root

Controller being the only Controller sending CHIP information about itself);
• CHIP shall be able to notify any Controller about actions to be taken to resolve an abnormal

situation.

Since CHIP, Controllers and child applications run on different hosts of the TDAQ computing
farm, they communicate each other via a CORBA based remote Inter Process Communication (IPC)
system.

2.3. Architecture of a Controller
The Controller’s design is strongly based on the definition of clear responsibilities for all of its
components. This strategy allows easy possible future extensions. A Controller is made up of several
logical sub-controllers that cooperate together in order to properly deal with incoming commands:

• Main Controller – It orchestrates all the operations performed by the Controller; it receives

commands from other applications and takes care of their execution delegating, when needed,
the responsibility to other components;

• FSM Controller – It is responsible for the FSM operations completely encapsulating all the
FSM’s implementation details;

• Application Controller – Its responsibility is to interact with the ProcessManager [5] system
in order to properly start and stop child applications and monitor its life-time;

• Command Controller – It executes commands as requested by the Main Controller, keeps
track of all the commands currently in execution and enforces that only compatible commands
are executed concurrently;

• DVS Controller – It interacts with the DVS [6] sub-system (implementing the Test
Management functionalities) in order to verify the functional status of the controlled child
applications.

2.3.1. Commands as resources. The Command Controller uses a simple mechanism in order to both
keep track of all the commands being executed at any moment in time and to manage the concurrent
execution of multiple commands. Commands are treated as if they were resources:

• every command declares a list of other commands it should not be executed concurrently with;
• before every command is executed, the Command Controller checks whether some

“incompatible” command is already being executed and, if not, a resource for the current
command is allocated (the resource being the command itself);

• when a command execution is completed, the corresponding resource is freed.

2.4. Performances
From a performance point of view it is important to keep low the overhead introduced by the RC
system in dispatching commands and receiving their acknowledgments. In order to evaluate such an
overhead, the time needed by a controller application to fully perform a FSM state transition is

measured as a function of the number of child applications. With about one thousand child
applications the time needed to perform a state transition is less than 180 ms1 (see figure 2). Taking
into account that transition actions performed by real-life applications during physics runs take tens of
seconds and that during the LHC Run 2 a single controller will supervise O(100) children, the
controller’s performance is fully satisfactory.

Figure 2. Plot showing the time
needed by a Controller to perform a
FSM state transition as a function of
the number of child applications
(evenly distributed on a rack of 39
computing nodes). Child
applications are configured to not
execute any action during state
transitions (i.e., they just receive
commands from the parent
controller and notify it when the
command execution starts or
completes).

3. The CHIP

3.1. Overview
The application CHIP gathers various information and employs a Complex Event Processing (CEP)
engine in order to aggregate, correlate and analyze this information. Its knowledge base consists of a
set of rules loaded from text files. After evaluation of the various CEP engines available on the
market, CHIP was based on ESPER [7]. This engine was chosen because of its comprehensive
documentation, its open-source license and because it is based on Java which is a well-known and
widely used programming language. ESPER allows:

• Efficient handling of very high information update rates – The peak rate is typically several
tens of thousands of events per second. These peaks coincide with global state transitions of
the RC system. Since errors are more likely to occur during state transitions than at other
times, it is important that the engine can timely react to failures also in these conditions.

• Rule testing – The correct logic of new rules can be verified by artificial injection of events in
a unit test. This makes the development of new rules easier, since the behaviour of rules can
be tested without creating special conditions in the production environment.

• Metrics analysis – It is possible to monitor the CPU usage of individual rules. This is a
powerful feature because it allows to identify CPU intensive rules which then can be revised
and optimized. In this way potential CPU bottlenecks can be circumvented.

• Configuration of threading model – It is possible to change the size of the various engine
inherent thread pools in order to tune the engine for best performance.

• Natural support for temporal correlations – It is often of high interest to correlate events
happening at different points in time. An example for this may be the detection of
applications, which, even though automatically restarted after failure, repeatedly crash in a
given time window. The frequent crashes may indicate a severe underlying problem and
should be investigated.

1 Tests have been executed on nodes equipped with two Intel Xeon E5645 CPUs, 24 GB of RAM and
GbE link connection.

• Sophisticated anomaly detection – The ability to perform complex correlations of data from
various information providers is one of the main characteristics of CEP engines.

Besides processing the information coming from the RC Controllers, CHIP makes use of the
information available in the logging service, the operational data service and the configuration service.
For each type of information a corresponding adapter was implemented which makes the information
available to the CEP engine (see figure 3). Furthermore CHIP interacts with the Test Management
service. Amongst others this allows to detect DAQ problems originating from hardware or network
failures.

Figure 3. Architectural overview of CHIP. The flow of information is from left to right and can be
divided into three phases: gathering of information using various event injectors, processing of the
information within the CEP engine and distribution of results.

3.2. Knowledge base
At present CHIP handles about twenty different kind of recoveries, some of which are very generic,
e.g. for crashed applications, others are very sophisticated, e.g. for recovering failing high level trigger
applications. Additionally, CHIP automates about ten procedures, e.g. the raise of high voltage of
detector components when collisions are established and beam conditions are safe, or the selection of
the ATLAS reference clock depending on current detector and beam conditions. The knowledge base
is thought of as a non-constant set of rules which is gradually extended over time when new type of
errors occur which can be resolved by well-defined recovery procedures.

3.3. Required resources and performance
CHIP runs on a dedicated 16-core machine and uses about 1GB of memory2. The CPU utilization
follows the incoming event rate and typically varies between <1% and 300% (i.e., the equivalent of 3
CPU cores out of 16). The CPU utilization of the different rules is regularly measured in dedicated test
sessions based on the CEP engine’s built-in metrics (see figure 4). The responsiveness of CHIP was
verified in tests during which the information update peak rate was at least twice as high as expected
for LHC Run 2.

2 Tests have been executed on a node equipped with two Intel Xeon E5540 CPUs, 24 GB of RAM and
GbE.

Figure 4. This diagram shows the CPU
wall time needed for the evaluation of
different ESPER statements (not all
existing statements shown). The evaluation
time of each statement is averaged over the
duration of an approximately 15 minutes
long test session, during which the RC was
used to cycle the DAQ system through
various states and during which various
failures were provoked.

3.4. Error recovery example
In case the data taking is blocked due to a faulty sub-detector component, CHIP can dynamically
disable the corresponding read-out links without the need for stopping the data taking session. The
procedure involves obtaining the read-out link endpoints from the configuration database and
communicating with the concerned read-out applications. Once the sub-detector issue has been looked
into and resolved, CHIP can re-enable the corresponding read-out components and integrate them
back, again without the need of stopping the data taking session. The advantages of this procedure are
two-fold: firstly, the recorded data may still be suited for physics analyses depending on the disabled
sub-detector channels and secondly, the DAQ system down-time caused by this procedure is much
smaller than the down-time caused by a full stop and restart of the complete data taking session. Thus
less integrated luminosity is lost for physics analyses.

4. Conclusions
The re-design of the RC system, which is assisted by the application CHIP, achieves the clear
separation between the steering and supervising functionality. Whereas the former is taken care of by
the RC system, the latter is implemented in CHIP. The decision to base CHIP on a CEP engine allows
advanced anomaly detection and error recognition. With unit tests the correct behavior of rules can be
verified by injection of artificial events without the need for recreating the error conditions in the
production environment. Dedicated test sessions and metrics analyses have shown that CHIP is
responsive even during peaks of the incoming information updates. The peak rates during those test
sessions were larger than anticipated for LHC Run 2.

References
[1] ATLAS Collaboration ATLAS high-level trigger, data-acquisition and controls : Technical

Design Report (Geneva : CERN) https://cds.cern.ch/record/616089?ln=en
[2] ATLAS Collaboration The ATLAS experiment at the CERN Large Hadron Collider JINST 3

(2008) S08003
[3] CLIPS http://clipsrules.sourceforge.net/
[4] Almeida J, Dobson M, Kazarov A, Lehmann Miotto G, Sloper JE, Soloviev I and Torres R The

ATLAS DAQ system online configurations database service challenge Proc. CHEP 2007,
J.Phys.: Conf.Ser. 119 (2008) 022004

[5] Avolio G, Dobson M, Lehmann Miotto G and Wiesmann M The ProcessManager in the

ATLAS DAQ system Proc. Real-Time Conference, 2007, 15th IEEE-NPSS, IEEE
Trans.Nucl.Sci. 55 (2008) 399-404

[6] Avolio G, Corso-Radu A, Kazarov A, Lehmann Miotto G, Papaevgeniou L, Soloviev I, and
Unel G A dynamic test management framework for the ATLAS experiment ATLAS
conference slide ATL-DAQ-SLIDE-2014-226 (https://cds.cern.ch/record/1703297?ln=en)

[7] EsperTECH http://esper.codehaus.org

