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Abstract. Solving the question of the origin of ultra-high energy cosmic rays (UHECRs)
requires the development of detailed simulation tools in order to interpret the experimental
data and draw conclusions on the UHECR universe. CRPropa is a public Monte Carlo code
for the galactic and extragalactic propagation of cosmic ray nuclei above ∼ 1017 eV, as well as
their photon and neutrino secondaries. In this contribution the new algorithms and features
of CRPropa 3, the next major release, are presented. CRPropa 3 introduces time-dependent
scenarios to include cosmic evolution in the presence of cosmic ray deflections in magnetic
fields. The usage of high resolution magnetic fields is facilitated by shared memory parallelism,
modulated fields and fields with heterogeneous resolution. Galactic propagation is enabled
through the implementation of galactic magnetic field models, as well as an efficient forward
propagation technique through transformation matrices. To make use of the large Python
ecosystem in astrophysics CRPropa 3 can be steered and extended in Python.

1. Introduction
The question of the origin of ultra-high energy cosmic rays (UHECRs) continues to be of
high interest. The experimental situation for cosmic rays above 1017 eV is promising, with
the Telescope Array and the Pierre Auger Observatory covering the northern and southern
hemisphere with large exposure. Recent measurements include the energy spectrum [1, 2],
composition [3, 4, 5] and anisotropy studies [6]. Interpreting these measurements in terms
of concrete astrophysical scenarios requires detailed simulations of cosmic ray propagation
from the source to the observer. In these simulations the deflection of UHECRs need to be
computed over several orders of magnitude in energy and length scales, ranging from hundreds
of megaparsecs down to galactic kiloparsec scales. Furthermore, all relevant interactions, such as
photo-disintegration, pion production and pair production, need to be included. The simulation
tool should be flexible enough to cover the large parameter space of possible astrophysical
scenarios, in order to constrain the origin of UHECRs in comparison with experimental data.
For this purpose CRPropa 3 was developed, with the physics processes based to a large extent
on the original CRPropa 2.0 [7]. In this contribution we will summarize its main new features.

2. Overview of CRPropa
CRPropa is a publicly available simulation software for the Monte Carlo (MC) propagation of
cosmic ray nuclei, photons and neutrinos through an extragalactic and galactic environment.



CRPropa simulates interactions such as electron pair-production, pion-production and photo-
disintegration of nuclei with the diffuse extragalactic background radiation, as well as nuclear
decay, and it includes secondary particles created in these interactions.

The simulations can be performed either in a one-dimensional (1D) or three-dimensional
(3D) mode. The 3D mode allows to define a 3D source distribution and takes into account
the deflections of charged cosmic rays in extragalactic magnetic fields. In the 1D mode the
cosmological evolution of the sources and background radiation as well as the adiabatic energy
loss of cosmic rays can be implemented. CRPropa thereby enables the user to predict the
spectra of UHECR (and of their secondaries), their composition and arrival directions. All of
these features are inherited by the new version CRPropa 3 [8].

3. New features of CRPropa 3
CRPropa 3 features several significant advancements in the CRPropa development. The main
improvement is a new modular simulation layout, that allows for multiple simulation use cases,
and for easier testing, maintenance and physics extensions.

3.1. Code structure, steering and parallelization
CRPropa 3 was completely rewritten with a new code structure, separating all aspects of the
simulation into independent modules that correspond to individual photo-nuclear interactions,
boundary conditions, observers etc. The cosmic ray particle class serves as a single interface
between the simulation modules. The modules provide a method to update the cosmic ray
particle according to the module’s purpose. The simulation itself is a user-defined sequence
of simulation modules, that are called in turn to update the cosmic ray until the propagation
is either completed or aborted. Since there are no direct dependences between modules, any
combination of modules can in principle be selected, allowing for multiple use cases and to study
in detail individual propagation aspects.

Efficient MC propagation depends on dynamically adjusting the step size to accommodate
for varying conditions, e.g. making smaller steps in regions of strong magnetic deflections. A
bidding system allows all modules of a simulation to bid for the next step. The lowest bid is then
selected as step size for the next iteration of the module sequence. Therefore the propagation
proceeds with the largest possible step that still ensures the numerical accuracy as defined by
the user.

CRPropa 3 is written in C++ and interfaced to Python using SWIG 1. This allows to set up
and steer simulations in a high level scripting language while all computations are performed with
the underlying C++ code. The SWIG interface enables cross-language polymorphism, which
can be used to extend a CRPropa simulation directly from the Python script that runs it. The
user can for example write a custom simulation module in Python to be used in combination with
the existing C++ modules. While the Python usage is the advised steering mode, backwards-
compatibility to the XML steering of CRPropa 2 is provided as well.

Cosmic ray propagation is a perfectly parallel task as interactions between cosmic rays are
negligible. Current multicore processors can therefore be adequately utilized by just running
multiple simulation instances in parallel. However, for better memory utilization, CRPropa 3
enables shared-memory multiprocessing using OpenMP 2. This allows to use higher resolution
magnetic fields and matter distributions in the simulation. The parallelization occurs on the
level of the module sequence with a dynamic distribution of cosmic rays among the available
threads. As the simulation modules are stateless, only a single instance of each module is needed.
The speedup is limited by the number of critical sections that are not thread safe and can only

1 www.swig.org
2 www.openmp.org
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be executed by one thread at a time. The critical section with the largest impact is the external
library SOPHIA [9], used to simulate photo-pion interactions. Thus, the speedup depends on
the frequency of these interactions. The speedup for a typical extragalactic simulation is shown
in fig. 1.

Figure 1: Speedup of CRPropa 3 in
an example simulation of extragalactic
propagation. The presence of non-
parallelized sections limit the speedup
to about 6-8 in typical simulations.

Figure 2: Representation of the non-zero matrix
elements of the magnetic field lens for the JF12 model
and two example energies, 1019 and 1020 eV. Non-
diagonal entries correspond to cosmic ray deflections,
which are more pronounced with decreasing energy.
The sparsity of the matrices is used to significantly
lower the memory requirement.

3.2. Magnetic field techniques
Magneto-hydrodynamical simulations of structure formation provide models of the structured
extragalactic magnetic field and matter distribution. The challenge of these simulations is
the large difference in scale between the simulation volume of ∼ (0.1 − 1 Gpc)3 size and the
required resolution to resolve the structures down to the level of galaxies ∼ 1 − 10kpc. Two
of the techniques used in this context are smooth particles (SP) and adaptive mesh refinement
(AMR). In order to directly use the resulting extragalactic magnetic field models, CRPropa
provides interfaces to the SP-code Gadget [10] and the AMR-code RAMSES [11]. The trade
off, however, for the small memory demand of these techniques are large lookup times, which
easily become the bottleneck for tracking cosmic rays. In contrast, regular grids provide fast
lookup times but easily require a terabyte memory. As a compromise CRPropa offers the
use of modulated grids, which are a combination of a small high-resolution vector grid that is
periodically repeated to cover a larger volume, and a large low-resolution modulation grid that
carries information about the large-scale structure.

3.3. Galactic propagation
Estimates for the strength of the galactic magnetic field imply that cosmic rays of rigidities
E/Z > 1 EeV, where E is the energy and Z the charge number, may be considerably deflected
in the Galaxy, but without propagating diffusively. Thus, due to the short galactic propagation
as compared to extragalactic distances, energy loss processes are usually neglected and only
magnetic deflections are considered. CRPropa 3 enables the galactic propagation by providing
models of the galactic magnetic field and making use of the modular simulation layout. Both
forward- and backward tracking are supported. Forward tracking is computationally expensive
as the Earth is a point-like target compared to galactic distances, resulting in a very small



hit probability. In the second approach, cosmic rays are propagated backwards from Earth
to the galactic border. However, it is not straightforward to connect galactic backtracking
with extragalactic forward tracking. As an alternative third approach, CRPropa 3 provides the
lensing technique described and implemented in the PARSEC code [12]. The lensing technique
uses a set of matrices for different rigidities that are constructed from backtracking simulations
with e.g. CRPropa 3. The matrices transform cosmic ray directions at the galactic border into
arrival directions observed at Earth. The directions are binned with a HEALpix [13] scheme
into ∼ 50, 000 pixels for angular resolutions < 1◦. The matrices thus have ∼ 50, 0002 entries,
nominally corresponding to 9 GiB in single precision. Sparse matrices are utilized to significantly
lower the memory requirement to typically less than 10 MB per matrix. A representation of the
non-zero elements of two example matrices is shown in fig. 2. The lenses3 can be used to
transform entire arrival distributions through matrix-vector multiplications, or, in the context
of individual cosmic rays, as a lookup table of precomputed trajectories.

Generic combinations of axisymmetric or bisymmetric spiral disc and halo fields can be
considered as magnetic field models. CRPropa 3 also implements the JF2012 model [14, 15]
including the random large-scale and turbulent small-scale component. Additional user defined
models can be easily implemented through Python extensions.

3.4. 4D simulations
Cosmological effects such as the evolution of the background radiation are important when
simulating the propagation of UHECRs. In fact, including these effects in 3D simulations is
necessary for anisotropy studies, except for the highest cosmic ray energies, where propagation
distances are sufficiently short. However, in the presence of magnetic deflections it is not possible
to know a priori the effective propagation length and, therefore, the initial redshift of a cosmic
ray that is observed at the present time. Consequently, CRPropa 3 allows for 4D simulations,
in which cosmic rays propagate both spatially and in time. While computationally expensive,
due to the additional loss of statistics in the time dimension, there are multiple applications
for these simulations. In addition to the aforementioned anisotropy studies, effects of magnetic
suppression can be directly simulated for spectrum and composition studies. 4D simulations
can also be an important tool for the validation of a posteriori corrections, such as the magnetic
suppression parametrization in [16] and [17].

4. Example application
In the following we present an example of a 3D simulation of cosmic ray nuclei through a
structured universe and consider the galactic propagation with the lensing technique.

As a model for the structured universe we use the simulated matter distribution and magnetic
fields of Dolag et al. [18] and Miniati et al. [19]. The Dolag simulation reproduces the local
matter distribution by using a redshift survey as a constraint for the initial conditions. The
magnetic field arises from a primordial seed field, and is compatible with rotation measures of
galaxy clusters. However, the overall magnetic field strength is weaker compared to the Miniati
simulation and leads to small UHECR deflections. To emphasize the cosmic ray deflections, we
make use of the relation of matter density vs. magnetic field strength obtained from the Miniati
simulation. With this relation we translate the Dolag matter distribution into a distribution of
the magnetic field strength and use this as a modulation field for a higher resolution turbulent
field, as described in 3.2. Both modulation and vector field are stored on a Cartesian grid. The
modulation field covers a cubic volume of 132 Mpc edge length with a resolution of 300 kpc.

3 Lenses for a number of galactic magnetic field models can be found on
http://web.physik.rwth-aachen.de/Auger_MagneticFields/PARSEC/downloads.php

http://web.physik.rwth-aachen.de/Auger_MagneticFields/PARSEC/downloads.php
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Figure 3: Energy spectrum (top) and moments of
Xmax (center and bottom) as measured by the Pierre
Auger Collaboration [2, 4] and predictions from the
simulated scenario (thick brown lines). The red and
blue lines show the predicted Xmax moments for a pure
composition of protons and iron, respectively. Solid,
dotted and dashed lines show the cosmic ray shower
predictions for different hadronic interaction models.

Figure 4: Distribution of arrival
directions of events with energies
E > 1018.7 eV before (top) and after
galactic propagation (bottom). The
events are binned in HEALpix maps
and are normalized to the maximum
event count of the map before galactic
propagation.

The vector field has a resolution of 50 kpc and is initialized with a random turbulent realization
of Kolmogorov power spectrum and a coherence length of 500 kpc.

For the cosmic ray sources, we consider a continuous distribution that follows the matter
density. Using reflective boundary conditions for the cosmic rays, the contribution of sources
up to 4 Gpc distance is effectively taken into account. The sources isotropically emit cosmic
rays with a power-law spectrum and a rigidity dependent exponential cutoff. The differential
number of cosmic rays of charge number Zi and mass number Ai is given by

dNi

dE
∝ xiA

1.8−1
i E−1.8 exp

(
− E

Zi · 1019.8 eV

)
(1)

where xi is the relative abundance at equal energy per nucleon in absence of the cutoff. The
spectral index and cutoff rigidity are chosen as an example to approximately reproduce the



observed spectrum above 1018.7 eV. As representatives for a mixed cosmic ray composition, the
four isotopes hydrogen, helium-4, nitrogen-14 and iron-56 are selected with relative abundances
xi = 1, 0.5, 0.3 and 0.1, respectively. The resulting energy spectrum as well as the mean and
spread of the composition-sensitive Xmax observable are shown in fig. 3 in comparison with
current measurements of the Pierre Auger Observatory [2, 4]. While a reasonable fit to the
energy spectrum is achieved, the Xmax moments are not well reproduced in this scenario. The
distribution of arrival directions of events with energies E > 1018.7 eV is shown in fig. 4 both
before and after galactic propagation, for which the full JF12 field model is considered. While
the small-scale anisotropy is seen to decrease through deflections in the galaxy, some anisotropic
features remain.

5. Conclusion
In this contribution we have presented the public cosmic ray propagation code CRPropa 3. We
summarized the advantages of the new code structure, the implementation of multi-processing
and highlighted some of the new features, notably the galactic propagation, including the lensing
technique, and the possibility to consider cosmological evolution in 4-dimensional simulations.
We applied CRPropa to a scenario in which a mixed composition of hydrogen, helium, nitrogen
and iron was propagated through a combination of structured universe models, and considered
deflections in the galactic magnetic field. The simulation results were compared to measurements
of energy spectrum and composition of the Pierre Auger Observatory. The arrival directions
were shown as well, to demonstrate the possibility of simulating all observables accessible to
UHECR experiments. More information on CRPropa can be found on https://crpropa.desy.de.
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