
A Survey on Distributed File System Technology

J Blomer
CERN, CH-1211 Genève 23, Switzerland

E-mail: jblomer@cern.ch

Abstract. Distributed file systems provide a fundamental abstraction to location-transparent,
permanent storage. They allow distributed processes to co-operate on hierarchically organized
data beyond the life-time of each individual process. The great power of the file system interface
lies in the fact that applications do not need to be modified in order to use distributed storage.
On the other hand, the general and simple file system interface makes it notoriously difficult for
a distributed file system to perform well under a variety of different workloads. This has lead to
today’s landscape with a number of popular distributed file systems, each tailored to a specific
use case. Early distributed file systems merely execute file system calls on a remote server, which
limits scalability and resilience to failures. Such limitations have been greatly reduced by modern
techniques such as distributed hash tables, content-addressable storage, distributed consensus
algorithms, or erasure codes. In the light of upcoming scientific data volumes at the exabyte
scale, two trends are emerging. First, the previously monolithic design of distributed file systems
is decomposed into services that independently provide a hierarchical namespace, data access,
and distributed coordination. Secondly, the segregation of storage and computing resources
yields to a storage architecture in which every compute node also participates in providing
persistent storage.

1. Introduction
Distributed file systems provide persistent storage of unstructured data, which are organized
in a hierarchical namespace of files that is shared among networked nodes. Files are explicitly
created and they can survive the lifetime of processes and nodes until explicit deletion. As such
they can be seen as the glue of a distributed computing infrastructure. Distributed file systems
resemble the API of local file systems. To applications, it should be transparent whether data is
stored on a local file system or on a distributed file system. This data model and the interface to
applications distinguishes distributed file systems from other types of distributed storage such as
databases.

Virtually all physics experiments store their data in distributed file systems. Large experiment
collaborations, such as the experiment collaborations at the Large Hadron Collider (LHC),
store data in a global federation of various cluster file systems rather than in a single, globally
distributed file system. For LHC experiments, such globally federated and accessible storage
sums up to more than 1 billion files and several hundred petabytes.

There is a variety of file systems available to choose from [1–14] and often it is not clear what are
the particular strengths, weaknesses, and implications of using one distributed file system over the
other. Several previous studies presented taxonomies, case studies, and performance comparisons
on distributed file systems [15–20]. This survey is focused on the underlying building blocks
of distributed file systems and what to expect from them with respect to physics applications.



The survey is mainly driven by the high-energy physics needs, which however cover many of the
aspects relevant to distributed file systems in general.

2. How are Distributed File Systems Used?
Even though the file system interface is general and fits a broad spectrum of applications, most
distributed file system implementations are optimized for a particular class of applications. For
instance, the Andrew File System (AFS) is optimized for users’ home directories [2], XrootD
is optimized for high-throughput access to high-energy physics data sets [7], the Hadoop File
System (HDFS) is designed as a storage layer for the MapReduce framework [10,21], the CernVM
File System (CVMFS) is optimized to distribute software binaries [12], and Lustre is optimized
as a scratch space for cooperating applications on supercomputers [5]. These use cases differ
both quantitatively and qualitatively. Consider a multi-dimensional vector describing different
levels of properties or requirements for a particular class of data that consists of data value, data
confidentiality, redundancy, volume, median file size, change frequency, and request rate. Every
single use case above poses high requirements in only some of the dimensions. All of the use cases
combined, however, would require a distributed file system with outstanding performance in every
dimension. Moreover, some requirements contradict each other: a high level of redundancy (e. g.
for recorded experiment data) inevitably reduces the write throughput in cases where redundancy
is not needed (e. g. for a scratch area). The file system interface provides no standard way to
specify quality of service properties for particular files or directories. Instead, we have to resort
to using a number of distributed file systems, each with implicit quality of service guarantees and
mounted at a well-known location (/afs, /eos, /cvmfs, /data, /scratch, . . . ). Quantitative file
system studies, which are unfortunately rare, provide precise workload characterizations to guide
file system implementers [22–24].

2.1. Application Integration
From the point of view of applications there are different levels of integration a distributed file
system can provide. Most file systems provide a library with an interface that closely resembles
POSIX file systems. The advantage is that the interface can be adapted to the use case at hand.
For instance, the Google File System (GFS) extends POSIX semantics by an atomic append [25],
a feature particularly useful for the merging phase of MapReduce jobs. A library interface comes
at the cost of transparency; applications need to be developed and compiled for a particular
distributed file system.

So called interposition systems introduce a layer of indirection that transparently redirects file
system calls of an application to a library or an external process. The Parrot system creates a
sandbox around a user-space process and intercepts its system calls [26]. The Fuse kernel-level
file system redirects file system calls to a special user-land process (“upcall”) [27]. Interposition
systems come with a performance penalty for the indirection layer. This penalty is smaller for
Fuse than for a pure user-level interposition system, but Fuse requires co-operation from the
kernel.

Some distributed file systems are implemented as an extension of the operating system kernel
(e. g. NFS [1], AFS, Lustre). That can provide better performance compared to interposition
systems but the deployment is difficult and implementation errors typically crash the operating
system kernel.

Distributed file systems do not fully comply with the POSIX file system standard. Each
distributed file system needs to be tested with real applications. Functionality that is often
poorly supported in distributed file systems is file locking, atomic renaming of files and directories,
multiple hardlinks, and deletion of open files. Sometimes, deviations from the POSIX standard
are subtle. HDFS, for instance, writes file sizes asynchronously and thus it returns the real size of
a file only some time after the file has been written.



3. Architecture Evolution
The simplest architecture for a distributed file system is a single server that exports a local
directory tree to a number of clients (e. g. NFSv3). This architecture is obviously limited by the
capabilities of the exporting server.

An approach to overcome some of these limitations is to delegate ownership and responsibility
of certain file system subtrees to different servers, as done by AFS. In order to provide access to
remote servers, AFS allows for lose coupling of multiple file system trees (“cells”). Across cells,
this architecture is not network-transparent: moving a file from one cell to another requires a
change of path. It also involves a copy through the node which triggers the move, e. g. move is
not a namespace-only operation. Furthermore, the partitioning of a file system tree is static and
changing it requires administrative intervention.

In object-based file systems, data management and meta-data management is separated (e. g.
GFS). Files are spread over a number of servers that handle read and write operations. A
meta-data server maintains the directory tree and takes care of data placement. As long as
meta-data load is much smaller than data operations (i. e. files are large), this architecture allows
for incremental scaling. As the load increases, data servers can be added one by one with minimal
administrative overhead.

The architecture is refined by parallel file systems (e. g. Lustre) that cut every file in small
blocks and distribute the blocks over many nodes. Thus read and write operations are executed
in parallel on multiple servers for better maximum throughput.

A distributed meta-data architecture (as for instance in Ceph [9]) overcomes the bottleneck of
the central meta-data server. Distributed meta-data handling is more complex than distributed
data handling because all meta-data servers are closely coupled and need to agree on a single
state of the file system tree. That involves either distributed consensus algorithms [28, 29] or
distributed transaction protocols such as two-phase commit.

Object-based architectures involve two servers (meta-data server, data server) for read and
write operations. Instead of asking a meta-data server, decentralized or peer-to-peer file systems
(e. g. GlusterFS [13]) let clients compute the location of data and meta-data by means of a
distributed hash table. Zero-hop routing in a distributed hash table is restricted to a local
network, however, in which every node is aware of every other node. On a global scale, tree based
routing as being done by XrootD is simpler to implement and it shows better lookup performance
than globally distributed hash tables. Furthermore, high peer churn (servers that frequently join
and leave the network) pose a hard challenge on distributed hash tables.

3.1. Decomposition
There is a tendency of decomposition and modularization in distributed file systems. Examples
are the offloading of authorization to Kerberos in AFS, the offloading of distributed consensus
to Chubby [30] in GFS (resp. ZooKeeper [31] in HDFS), or the layered implementation of Ceph
with the independent RADOS key-value store as building block beneath the file system. Another
example is the separation of a distributed file system namespace and the data access. In the grid,
for instance, the namespace is controlled by experiments’ file catalogs, which, in combination with
grid middleware, federates globally distributed cluster file systems.

For a globally distributed and administratively independent computing infrastructure used in
high-energy physics, modularization is important because it allows for deployment of incremental
improvements. A completely new file system takes many years to stabilize and roll-out throughout
the grid.

4. Mechanisms and Techniques
A distributed file system should be fast and it should scale to many files, users, and nodes. At
the same time, it should sustain hardware faults and recover gracefully from them and ensure the



integrity of the file system over long storage periods and long-distance network links. This section
highlights techniques that are used to achieve these goals and that are particularly relevant for
distributed file systems in high-energy physics.

4.1. File System Integrity
Global file systems often need to transfer data via untrusted connections and still ensure integrity
and authenticity of the data. Cryptographic hashes of the content of files are often used to
ensure data integrity. Cryptographic hashes provide a short, constant length, unique identifier
for data of any size. Collisions are virtually impossible to occur neither by chance nor by clever
crafting, which makes cryptographic hashes a means to protect against data tampering. Many
globally distributed file systems use cryptographic hashes in the form of content-addressable
storage [12, 32–34], where the name of a file is derived from its cryptographic content hash. This
allows for verification of the data independently of the meta-data. It also results in immutable
data, which eliminates the problem of detecting stale cache entries and keeping cache consistency.
Furthermore, redundant data and duplicated files are automatically de-duplicated, which in some
use cases (backups, scientific software binaries) reduces the actual storage space utilization by
many factors [12,35].

Cryptographic hashes are also used to protect the integrity of the file system tree when
combined with a Merkle tree [36]. In a Merkle tree, nodes recursively hash their children’s
cryptographic hashes so that the root hash uniquely identifies the state of the entire file system.
Copies of this root hash created at various points in time provide access to previous snapshots of
file systems, which effectively allows for backups and for versioned file systems. The hashes in
the tree can also be cryptographically signed in order to ensure data authenticity of a file system
or a subtree (who created the content). An elegant way to solve the problem of key distribution
inherent to digital signatures is the encoding of the public key as part of the path name [37].

To protect against silent corruption—the probabilistic decay of physical storage media over
time—simple checksums such as CRC32 provide an easy means. Checksums can be faster verified
than cryptographic hashes, fast enough to compute them on the fly on every read access [10].

4.2. Fault-Tolerance
Fault-tolerance is an important property for a file system in high-energy physics because of
the large scale of the storage systems and because mostly commodity hardware is used. Thus,
hardware failures are not only the norm but they also tend to occur in a correlated manner.
Power cuts are an example, or a failing controller with many connected drives.

Replication and erasure codes are the techniques used to avoid data loss and to continue
operation in case of hardware failures. An engineering challenge is the placement of redundant
data in such a way that the redundancy crosses multiple failure domains. The Ceph file system,
for instance, can parse the physical layout of a data center together with policies to distribute
redundant data on multiple racks or disk shelves. Another option is to keep a copy of all data at
a remote data center. The second engineering challenge is to decide when to start a recovery,
i. e. to distinguish between short-term glitches and permanent faults. Tight monitoring can help
to distinguish between the two in some cases, but in general the only available technique are
heartbeats between servers and properly tuned time-out values [38].

While replication is simple and fast, it also results in a large storage overhead. Most systems use
a replication factor of three. Erasure codes, on the other hand, can be seen as more sophisticated,
distributed RAID systems. Every file is chunked and additional redundancy blocks are computed.
Typically the storage overhead of erasure codes is much smaller than a factor of two. Erasure
codes, however, come at the cost of computational complexity. Modifications to a file as well as
recovery from hardware faults is expensive because the redundancy blocks have to be recalculated
and redistributed. Exploration of the trade-off between computational complexity and storage



overhead in erasure codes are an active research area. Only a few of today’s open-source distributed
file systems implement erasure codes [9, 11,14].

In order to determine the required level of redundancy and in order to balance the resources
assigned to recovery and the resources assigned to normal usage, it is necessary to predict the
failure rate of storage systems. This is a hard problem. In large scale storage systems, the mean
time to failure of components can be measured, and simulations or a Markov chain model can be
used to reason about the failure rate of the system as a whole. Although state of the art, the
failure probabilities returned by these approaches are often off by large factors [38].

4.3. Efficiency
Caching and file striping are standard techniques to improve the speed of distributed file systems.
Caches can be located in memory, in flash memory, or on hard disks. They are transparently filled
on access; opportunistic pre-placement of data sets is typically not part of distributed file systems
but it is implemented in data management systems on top of distributed file systems. Cache sizes
needs to be manually tuned according to the working set size of applications. Caches are most
often managed per file system node. Co-operative caches between nodes in a local network have
been discussed [33,39,40] but they are not implemented in today’s production file systems. Some
distributed file systems, however, support the notion of different pools with different performance
characteristics (e. g. flash memory, hard drives, and tapes) and automatic migration of data sets
between such pools [4, 8, 41].

Striping, reading and writing a file in small blocks on many servers in parallel, works only
for large files. For small files, (memory) caches can improve the read performance but the
write performance on hard drives can suffer from the seek operations necessary to write data
and meta-data to disk. Log-structured file systems provide near-optimal write performance for
small and large files because all changes, new data and meta-data are appended to the physical
medium [42,43]. While log-structured data organization is popular in distributed key-value stores,
it is only occasionally used in distributed file systems, possibly because most of them assume
large sequential writes. In high-energy physics, this assumption is often valid but not always.
Counter examples are the modifications to a file system namespace or the merging phase of a
parallelized physics analysis with many small distributed parts of the final result. Moreover,
log-structured data organization is an efficient means to manage storage space throughout the
memory hierarchy, for DRAM, flash memory, and hard disks [44].

Dynamic workload adaptation is a technique used in the Ceph file system to change the mapping
of meta-data to meta-data servers based on the server load. The file system tree is dynamically
re-partitioned and re-distributed and single hot directories are split across multiple servers. The
implementation is challenging though; a recent study still revealed stability problems [20].

5. Current Developments and Future Challenges
In the upcoming years, the computing landscape will move towards the exascale. That means
data sets that routinely sum up to exabytes and supercomputers that provide computing power
in the exaflop range, which are expected by 2020. Table 1 shows the development of storage
bandwidth and capacity in the last 20 years. The rapid increase in storage capacity allows for
exabyte data sets already today. At the same time, however, storage bandwidth developed not
nearly at the same pace. While the gap between capacity and bandwidth widened by one to two
orders of magnitude in the last 20 years, the bandwidth of Ethernet networks scaled at a similar
pace than the capacity of hard drives.

Raicu et al. predict the collapse of exaflop supercomputing applications due to the limited
storage bandwidth and the architecture of today’s distributed file systems [46,47]. They suggest
to break the segregation between storage networks and compute networks and to build distributed
file systems with the following characteristics.



Table 1. Development of capacity and bandwidth in the last 20 years. Method and entries
marked † from Patterson [45]. Other numbers refer to Seagate ST6000NM0034 hard drive (2014),
DDR2-400 DRAM (2004) and DDR4-3200 DRAM (2014), and the 100 GbitE IEEE 802.3bj
standard (2014).

Hard Disk Drives DRAM Ethernet
Year Capacity Bandwidth Capacity Bandwidth Bandwidth

1993 16 Mibit/chip† 267 MiB/s†

1994 4.3GB† 9 MB/s†

1995 100 Mbit/s†

2003 73.4GB† 86 MB/s† 10 Gbit/s†
2004 512 Mibit/chip 3.2GiB/s

2014 6TB 220 MB/s‡ 8 Gibit/chip 25.6GiB/s 100 Gbit/s
Increase ×1395 ×24 ×512 ×98 ×1000

‡http://www.storagereview.com/seagate_enterprise_capacity_6tb_35_sas_hdd_review_v4

(i) Every compute node becomes a part of the storage network, counting on the fact that the
bisection bandwidth of the network connecting compute nodes is sufficiently high to move
data.

(ii) Flash memory is explicitly used as a layer in the storage hierarchy and data locality is
exposed in the file system, so that in many cases data can stay in local fast storage.

Similarly, Seagate Kinetic technology suggests to replace storage management servers by network-
attached hard drives that can be directly addressed from applications [48]. And in the BigData
community, a move has taken place to coalesce storage and compute nodes using GFS and
MapReduce, resp. its open source counterpart Hadoop and recent real-time and in-memory
enhancements such as Spark [49]. In high-energy physics, workflows are often executed in multiple
stages (e. g. simulation and reconstruction, filter and analysis and merge) and often the result of
stage 𝑛 is explicitly written to a distributed file system only to be used as input for stage 𝑛+ 1.
Investing in a computing framework and a distributed file system that exploits data locality
and allows for keeping data at the node where they are produced would help to overcome the
bandwidth limitations in today’s and future storage hardware.

In the last few years, development efforts in distributed storage systems were mostly aimed
at key-value stores, BLOB stores, and NoSQL databases rather than file systems. Due to their
simpler interface, these technologies allow for very good scalability in local networks and fast
provisioning of (mostly small) objects. As such, they become a building block of distributed file
systems [9,11] but they are not replacing them. They do not primarily address features necessary
for data sharing, such as quotas, fine-grained access control, a standard interface to applications,
or federation across multiple data centers.

Some recent distributed file system developments were aimed at storing and sharing personal
data [50,51]. Such systems explore extensions of the pure file system interface in order to support
meta-data searches and instant dissemination of file system subtrees and document collections.
These systems are decentralized and more flexible approaches to the problems addressed by
Dropbox and AFS.

http://www.storagereview.com/seagate_enterprise_capacity_6tb_35_sas_hdd_review_v4


6. Conclusion
Distributed file systems provide a relatively well-defined and general purpose interface for
applications to use large-scale persistent storage. The hierarchical namespace provides a natural
and flexible way to store large amounts of unstructured data. The implementation of distributed
file systems, however, is always tailored to a particular class of applications. Even though a large
number of distributed file systems is available today, some practical and important use cases are
still uncovered. For instance, a distributed file system for a cluster of commodity servers that
provides at least half of the aggregated throughput of the hard drives, utilize at least 90 % of the
available capacity, without central components and fault-tolerant to a small number of hardware
failures would fit the storage needs of many small and mid-sized physics experiments [52].

For large-scale distributed file systems targeted at anticipated physics data sets in the exabyte
range, the relatively small bandwidth of storage hardware poses a hard challenge. Approaches
towards decentralized file systems that coalesce storage nodes and compute nodes and that
make explicit use of locality and flash memory offer a possible solution to overcome such limits.
Quantitative studies on the file system usage of physics applications should guide the selection
and development of building blocks for future distributed file systems in physics experiments.

References
[1] Sandberg R, Goldberg D, Kleiman S, Walsh D and Lyon B 1985 Proc. of the Summer USENIX conference pp

119–130
[2] Morris J H, Satyanarayanan M, Conner M H, Howard J H, Rosenthal D S H and Smith F D 1986

Communications of the ACM 29 184–201
[3] Carns P H, III W B L, Ross R B and Thakur R 2000 Proc. 4th Annual Linux Showcase and Conference

(ALS’00) pp 317–328
[4] Schmuck F and Haskin R 2002 Proc. 1st USENIX conf. on File Storage and Technologies (FAST’02) pp

231–244
[5] Schwan P 2003 Proc. of the 2003 Linux Symposium pp 380–386
[6] Nagle D, Serenyi D and Matthews A 2004 Proc. of the 2004 ACM/IEEE conf. on SuperComputing (SC’04)
[7] Dorigo A, Elmer P, Furano F and Hanushevsky A 2005 WSEAS Transactions on Computers 4 348–353
[8] Fuhrmann P and Gülzow V 2006 dCache, Storage System for the Future (Springer) pp 1106–1113 (Lecture

Notes in Computer Science no 4128)
[9] Weil S A 2007 Ceph: reliable, scalable, and high-performance distributed storage Ph.D. thesis University of

California Santa Cruz
[10] Shvachko K, Kuang H, Radia S and Chansler R 2010 Proc. of the 26th IEEE Sympoisum on Mass Storage

and Technologies (MSST’10) pp 1–10
[11] Peters A J and Janyst L 2011 Journal of Physics: Conference Series 331
[12] Blomer J, Aguado-Sanchez C, Buncic P and Harutyunyan A 2011 Journal of Physics: Conference Series 331
[13] Davies A and Orsaria A 2013 Linux Journal
[14] Ovsiannikov M, Rus S, Reeves D, Sutter P, Rao S and Kelly J 2013 Proc. of the VLDB Endowment vol 6 pp

1092 – 1101
[15] Satyanarayanan M 1990 Annual Review of Computer Science 4 73–104
[16] Guan P, Kuhl M, Li Z and Liu X 2000 A survey of distributed file systems University of California, San Diego
[17] Agarwal P and Li H C 2003 A survey of secure, fault-tolerant distributed file systems http://www.cs.utexas.

edu/users/browne/cs395f2003/projects/LiAgarwalReport.pdf
[18] Thanh T D, Mohan S, Choi E, Kim S and Kim P 2008 Proc. int. conf. on Networked Computing and Advanced

Information Management (NCM’08) pp 144 – 149
[19] Depardon B, Séguin C and Mahec G L 2013 Analysis of six distributed file systems Tech. Rep. hal-00789086

Université de Picardie Jules Verne
[20] Donvito G, Marzulli G and Diacono D 2014 Journal of Physics: Conference Series 513
[21] Dean J and Ghemawa S 2008 Communications of the ACM 51 107–114
[22] Doraimani S and Iamnitchi A 2008 Proc. 17th int. symposium on High performance distributed computing pp

153–164
[23] Leung A W, Pasupathy S, Goodson G and Miller E L 2008 Proc. of the USENIX Annual Technical Conference

pp 213–226
[24] Dayal S 2008 Characterizing hec storage systems at rest Tech. Rep. CMU-PDL-08-109 Carnegie Mellon

University

http://www.cs.utexas.edu/users/browne/cs395f2003/projects/LiAgarwalReport.pdf
http://www.cs.utexas.edu/users/browne/cs395f2003/projects/LiAgarwalReport.pdf


[25] Ghemawat S, Gobioff H and Leung S T 2003 ACM SIGOPS Operating Systems Review 37 29–43
[26] Thain D and Livny M 2005 Scalable Computing: Practice and Experience 6 9
[27] Henk C and Szeredi M Filesystem in Userspace (FUSE) http://fuse.sourceforge.net URL http:

//fuse.sourceforge.net/
[28] Lamport L 1998 ACM Transactions on Computer Systems 16 133–169
[29] Ongaro D and Ousterhout J 2014 Proc. of the 2014 USENIX Annual Technical Conference (USENIX ATC

14) pp 305–319
[30] Burrows M 2006 Proc. 7th symposium on Operating systems design and implementation pp 335–350
[31] Hunt P, Konar M, Junqueira F P and Reed B 2010 Proc. of the 2010 USENIX annual technical conference
[32] Kubiatowicz J, Bindel D, Chen Y, Czerwinski S, Eaton P, Geels D, Gummadi R, Rhea S, Weatherspoon H,

Weimer W, Wells C and Zhao B 2000 ACM SIGPLAN Notices 35 190–201
[33] Dabek F, Kaashoek M F, Karger D, Morris R and Stoica I 2001 ACM SIGOPS Operating Systems Review 35

202–215
[34] Kutzner K 2008 The Decentralized File System Igor-FS as an Application for Overlay-Networks Ph.D. thesis

University of Karlsruhe
[35] Quinlan S and Dorward S 2002 Proc. of the 1st USENIX Conf. on File and Storage Technologies (FAST’02)

pp 89–102
[36] Merkle R C 1988 A Digital Signature Based on a Conventional Encryption Function (Lecture Notes in

Computer Science vol 293) (Springer) pp 369–378
[37] Mazières D, Kaminsky M, Kaashoek M F and Witchel E 1999 ACM SIGOPS Operating Systems Review 34

124–139
[38] Ford D, Labell F, Popovici F I, Stockly M, Truong V A, Barroso L, Grimes C and Quinlan S 2010 Proc. 9th

symposium on Operating Systems Design and Implementation (OSDI’10)
[39] Nelson M N, Welch B B and Ousterhout J K 1988 ACM Transactions on Computer Systems 6 134–154 ISSN

07342071
[40] Annapureddy S, Freedman M J and Mazières D 2005 Proc. of the 2nd Symposium on Networked Systems

Design and Implementation (NSDI’05) pp 129–142
[41] Lo Presti G, Barring O, Earl A, Rioja R M G, Ponce S, Taurelli G, Waldron D and Santos M C D 2007 Proc.

of the 24th IEEE Conference on Mass Storage Systems and Technologies pp 275–280
[42] Rosenblum M and Osterhout J K 1991 ACM SIGOPS Operating Systems Review 25
[43] Hartman J H and Osterhout J K 1995 ACM Transactions on Computer Systems 13 274–310
[44] Rumble S M, Kejriwal A and Ousterhout J 2014 Proc. 12th USENIX Conference on File and Storage

Technologies (FAST’14)
[45] Patterson D A 2004 Communications of the ACM 47
[46] Raicu I, Foster I T and Beckman P 2011 Proc. 3rd int. workshop on Large-scale system and application

performance (LSAP’11) pp 11–18
[47] Zhao D, Zhang Z, Zhou X, Li T, Wang K, Kimpe D, Carns P, Ross R and Raicu I 2014 Proc. of the 3rd IEEE

int. conf. on Big Data (BigData’14)
[48] Seagate Kinetic open storage documentation wiki https://developers.seagate.com/display/KV/Kinetic+

Open+Storage+Documentation+Wiki
[49] Engle C, Lupher A, Xin R, Zaharia M, Li H, Shenker S and Stoica I 2012 Proc. of the 9th USENIX conference

on Networked Systems Design and Implementation (NSDI’12)
[50] Fitzpatrick B et al. Camlistore http://camlistore.org
[51] Mashtizadeh A J, Bittau A, Huang Y F and Mazières D 2013 Proc. 24th ACM Symposium on Operating

Systems Principles (SOSP’13)
[52] Allen B 2009 A distributed file system wish-list Talk at Max Planck Institut für Informatik, Saarbrücken

http://fuse.sourceforge.net
http://fuse.sourceforge.net/
http://fuse.sourceforge.net/
https://developers.seagate.com/display/KV/Kinetic+Open+Storage+Documentation+Wiki
https://developers.seagate.com/display/KV/Kinetic+Open+Storage+Documentation+Wiki
http://camlistore.org

