
Tier 3 batch system data locality via managed caches

Max Fischer, Manuel Giffels, Christopher Jung, Eileen Kühn and
Günter Quast

Karlsruhe Institute for Technology, Kaiserstraße 12, 76131 Karlsruhe

E-mail: {max.fischer, manuel.giffels, christopher.jung, eileen.kuehn,

guenter.quast}@kit.edu

Abstract. Modern data processing increasingly relies on data locality for performance and
scalability, whereas the common HEP approaches aim for uniform resource pools with minimal
locality, recently even across site boundaries. To combine advantages of both, the High-
Performance Data Analysis (HPDA) Tier 3 concept opportunistically establishes data locality
via coordinated caches.

In accordance with HEP Tier 3 activities, the design incorporates two major assumptions:
First, only a fraction of data is accessed regularly and thus the deciding factor for overall
throughput. Second, data access may fallback to non-local, making permanent local data
availability an inefficient resource usage strategy. Based on this, the HPDA design generically
extends available storage hierarchies into the batch system. Using the batch system itself for
scheduling file locality, an array of independent caches on the worker nodes is dynamically
populated with high-profile data. Cache state information is exposed to the batch system both
for managing caches and scheduling jobs. As a result, users directly work with a regular,
adequately sized storage system. However, their automated batch processes are presented with
local replications of data whenever possible.

1. Introduction
The computing models of the LHC collaborations have been built around data storage [1, 2, 3, 4].
This is reflected in the hierarchical responsibilities in the LHC computing Grid, which defines
the access and distribution of data. Processing of data in High Energy Physics (HEP) usually
involves access from a dedicated computing cluster to a likewise dedicated storage cluster.
Data locality, i.e. communication distance from data to processing, is typically provided at
the granularity of an entire computing centre, housing both computing and storage resources.

In contrast, recent cluster computing architectures provide data locality at the granularity of
individual computing nodes. Systems such as GoogleFS [5] or Hadoop [6] use mixed compute and
storage resources: data is stored directly on compute nodes and processing is steered towards
nodes hosting the appropriate data. By promoting local data access, data can be read at full
capacity of the storage media while network communication is drastically reduced.

Due to the reduced network reliance, the mixed architecture generally scales better with
increasing processing throughput: processing power can be added with little impact on existing
resources. However, dedicated storage architectures are advantageous when the total data
volume by far exceeds the momentarily relevant data volume: storage capacity can be increased
without requiring an increase in computing capacity.



The ’High-Performance Data Analysis’ (HPDA) design thus aims at combining the two
paradigms. A top layer provides for fast local access, while a background layer serves as high-
volume storage (see figure 1).

a) Dedicated Storage b) Integrated Storage c) HPDA Storage

Figure 1: Processing architecture illustration: Batch clusters in HEP usually use dedicated
storage accessed via network from worker nodes (1a). Alternate setups such as Hadoop combine
storage and worker nodes to allow local access (1b). HPDA provides local access to prominent
data via caches overlaying classic high-volume dedicated storage (1c).

2. Conceptual Overview/Design Considerations
The workflows and data handling in HEP put several constraints on data usage. The HPDA
design adopts two of these constraints as operation assumptions:

• Only a fraction of data is accessed on a regular basis with a high frequency.

• Non-local data access is efficient, provided it occurs with limited concurrency.

Therefore, data locality in the HPDA concept encompasses staging only the most relevant
fraction of the total data locally on compute nodes. Any data can be fetched from remote
storage, while prominent data is also kept available as a local copy; in essence, this is the
functionality of a cache.

The deciding feature of HPDA caching is its scope: regular caching mechanisms for data from
devices or hosts, such as Linux bcache [7] or CacheFS, operate individually on their single host.
In the context of a pool of worker nodes however, all caches must likewise form a cache pool;
state must be shared, e.g. to ensure even spread of data on all caches, to factor in imbalances
of worker node capacities, or to decouple cache miss considerations from node availability.

In a cluster computing context such as HEP, data usage considerations extend beyond the
current state of the system. For example, access to a portion of a data set implies an increased
likelihood of subsequent access to the entire data set. Similarly, a history of repeated access
to data suggests future usage beyond a classic cache expiration timespan dictated by data rate
versus cache size (which would be low in the HEP context).

Thus, HPDA builds on the advantages of distributed caches [8], and extends it to actively
coordinated caches. Caches are supervised globally, so data can be staged and released from
caches asynchronously to current data accesses. The history of data accesses as well as features
of external data are taken into consideration to formulate improved caching constraints.

3. Architecture and Implementation
While many individual features of the HPDA design have existing implementations, these are
mostly part of specialized software or not compatible with HEP workflows. Hence, the HPDA
core components are largely assembled as a custom implementation to ease flexibility and future



extensions. The batch system itself, storage access and cache mapping rely on software and
frameworks common to the HEP community.

All custom components are written purely in Python due to the language’s extensive standard
library and the proven accessibility. HTCondor [9] was chosen as the batch system since it offers
extensive means for communication between nodes; in addition, it is well established in CMS
computing and under investigation by German CMS groups for opportunistic resources usage.
For transparent access to caches and remote filesystems, the logical filesystems of xRootD and
unionFS are used.

3.1. Exposed Caches
The HPDA cache on the worker nodes serves two functions: maintaining cached files and
exposing their state to the batch system. Several elements keep the cache up-to-date and give
it the autonomy to interact with the pool (see figure 2).

Meta-data of caches and files is stored in a catalogue.
Without the need to explicitly query local or remote
storage, the cache state can be easily inspected for
allocation and exposed to the batch system. For failure
robustness, regular checkpoints are used in combination
with incremental updates. This allows to quickly
reconstruct the current state of the catalogue from a
checkpoint by replaying stored updates.

A worker thread constantly maintains the cached
files by validating the meta-data against remote storage.
If new files are added to the catalogue, the worker
asynchronously fetches them for caching. Catalogue and
worker communicate only with generic, simple file state
and move instructions. Plugins for storage and cache
APIs allow supporting a range of storage systems without
adjustments to the core elements.

An additional allocator thread provides limited
autonomy for the cache. The allocator scores files based
on their features, e.g. access frequency. If there are
several local caches, this is used for deducing in which to
place the file. When a new file is suggested for caching,
the score is used to determine if it is accepted and which
older files to evict.

Figure 2: The HPDA cache consists
of three main elements: The catalogue
tracks the state of cached files. The
allocator assigns files to cache media,
creating fetching, movement and evic-
tion tasks. The worker ensures valid-
ity of catalogued files and performs the
allocator’s tasks.

A generic API is used to exchange information with the batch system. The current content
of the cache is regularly published to allow for data aware scheduling. Caching instructions are
received via jobs and passed on to the allocator for validation; the job exit code is used to signal
acceptance or rejection.

3.2. Coordinator
While the HPDA caches are able to share basic information, it is the responsibility of the
coordinator to observe the big picture. It extracts resource requests from the job queue and
history, and formulates staging orders to the cache pool if needed.

Information is extracted directly from the batch system, converting job ClassAds into
attribute maps. Any feature of a job, such as expected I/O rate, can thus be considered for
staging orders. The CMS grid overlay framework glideinWMS [10] has shown ClassAd extraction
to be scalable to thousands of jobs even with a basic implementation.



Staging orders are dispatched in an anonymous fashion: An order encompasses the subject
(i.e. file to stage), a score of importance, and resource constraints mimicking associated jobs.
The assignment to distinct caches is the responsibility of the batch scheduler, while rebalancing
and expiration is the responsibility of the caches. Thus, the coordinator does not need to be
concerned with the topology of the worker and cache pool.

The optimal coordination strategy is of course a matter of optimisation. The current
prototype implementation relies on manual staging orders; this is a logical side benefit of the
need for manual management tools and sufficient for initial performance tests. Devising an
optimal coordination strategy is the scope of future research.

3.3. Communication
In order to avoid duplicated infrastructure, HPDA components rely on the existing batch
system for information exchange across hosts. With the HTCondor batch system, two forms of
communication are used: ClassAds and communication jobs.

The ClassAd [11] is HTCondor ’s mechanism of describing entities, such as worker nodes or
jobs, with key-value attribute maps. In addition to standard entities, generic ClassAds with
arbitrary attributes can be published globally in the batch system. Using this method, HPDA
components can globally expose information about themselves, e.g. for reporting free cache
space.

Since direct communication in the cache-coordinator pool is for caching requests only, it
always encompasses scheduling problem: a fitting host must be found. To promote consistency
with job scheduling as well as modularity and scalability, the HPDA components do not address
each other directly. Instead, the information is encapsulated in a batch job with constraints on
fitting recipients. The batch system then directs the information to a suitable host, if any. Once
the job starts, it addresses the local HPDA component via Inter-Process Communication and
reports success or failure of the request via its exit code.

For both methods, a thin wrapper API allows using them similar to message queues. This
makes HPDA independent of the choice of the batch-system, as long as an equivalent API,
possibly using external resources, can be provided.

4. Experience
While the HPDA design has not been fully implemented yet, experiences with individual
components have been promising so far.

Access to local caches on mass storage easily matches network performance. Hard disk drives
(HDD) are comparable to 1 Gb/s network, while a single solid-state drive (SSD) reaches more
than half the throughput of a 10 Gb/s network. The largest issues are concurrent reads for
HDDs, with degrading performance above four concurrent accesses, and the limited capacity of
SSDs.

Interfacing with the HTCondor batch system has proven to be easy and reliable. Automated
job submission and information extraction was extensively tested during the development of the
grid-control [12] job management tool. The global glideinWMS infrastructure demonstrates the
scalability of ClassAd information extraction far beyond the needs of HPDA.

5. Summary and Outlook
The High-Performance Data Analysis (HPDA) design aims at merging dedicated storage with
data local batch processing. An array of caches on worker nodes forms a cache pool that provides
local access to high profile data. The pool is coordinated globally to include external data and
adjust to predicted access patterns. For scalability, a modular, decoupled architecture is chosen
that adds only low overhead of coordination on top of regular batch system activity.



On the infrastructure level, future research will focus on the optimal data locality. With
modern network, node-local and rack-local access is comparable in performance for some
applications [13]. Motivated by this, parallel filesystems distributed on machines of the same
racks are candidates for future improvements.

For high-level development, primary field of interest is the optimization of cache coordination.
Especially recognition of access patterns to anticipate data usage for pre-staging is a promising
approach.

Data locality versus high performance remote access is not a clear cut decision. Future scaling
tests will thus investigate the optimal environment for either approach. Since the underlying
HTCondor at KIT spans a non-flat topology of desktop computers, opportunistic resources, as
well as closely and loosely storage attached workers, we expect to be able to compare a wide
range of different dependencies.

Acknowledgments
The authors wish to thank all people and institutions involved in the project Large Scale Data
Management and Analysis (LSDMA), as well as the German Helmholtz Association, and the
Karlsruhe School of Elementary Particle and Astroparticle Physics (KSETA) for supporting and
funding the work.

References
[1] Grandi C, Stickland D, Taylor L et al. 2004 The CMS computing model preprint CERN-LHCC-2004-035/G-

083
[2] Jones R and Barberis D 2008 The ATLAS computing model J. Phys.: Conf. Series 119 072020

doi:10.1088/1742-6596/119/7/072020
[3] Brook N 2004 LHCb computing model CERN-LHCb-2004-119
[4] Carminati F et al. 2004 ALICE computing model CERN-LHCC-2004-038/G-086
[5] Dean J and Ghemawat S 2004 MapReduce: Simplified Data Processing on Large Clusters OSDI’04: Sixth

Symposium on Operating System Design and Implementation
[6] The Hadoop project homepage URL http://hadoop.apache.org/
[7] The bcache project homepage URL http://bcache.evilpiepirate.org/
[8] Paul S and Fei Z 2001 Distributed caching with centralized control Computer Communications 24-2 256-68

(doi: 10.1016/S0140-3664(00)00322-4)
[9] Thain D, Tannenbaum T and Livny M 2005 Distributed computing in practice: the Condor experience

Concurrency Computat.: Pract. Exper. 17 323–56 (doi: 10.1002/cpe.938)
[10] Sfiligoi I, Bradley D C, Holzman B, Mhashilkar P, Padhi S and Wurthwein F 2009 The Pilot Way to Grid

Resources Using glideinWMS WRI World Congress on Computer Science and Information Engineering 2
428–32 (doi:10.1109/CSIE.2009.950)

[11] Raman R, Livny M C and Solomon M 1998 Matchmaking: Distributed Resource Management for High
Throughput Computing Proceedings of the Seventh IEEE International Symposium on High Performance
Distributed Computing 140–6 (doi:10.1109/HPDC.1998.709966)

[12] The Grid-Control project homepage URL https://ekptrac.physik.uni-karlsruhe.de/trac/grid-control/
[13] Ananthanarayanan G, Ghodsi A, Shenker S and Stoica I 2011 Disk-locality in datacenter computing

considered irrelevant Proceedings of the 13th USENIX conference on Hot topics in operating systems 12
(doi:10.1109/HPDC.1998.709966)


