
Analyzing data flows of WLCG jobs at batch job level

Eileen Kuehn, Max Fischer, Manuel Giffels, Christopher Jung and
Andreas Petzold

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

E-mail: eileen.kuehn@kit.edu, max.fischer@kit.edu, manuel.giffels@kit.edu,

christopher.jung@kit.edu, andreas.petzold@kit.edu

Abstract. With the introduction of federated data access to the workflows of WLCG, it is
becoming increasingly important for data centers to understand specific data flows regarding
storage element accesses, firewall configurations, as well as the scheduling of batch jobs
themselves. As existing batch system monitoring and related system monitoring tools do not
support measurements at batch job level, a new tool has been developed and put into operation
at the GridKa Tier 1 center for monitoring continuous data streams and characteristics of
WLCG jobs and pilots. Long term measurements and data collection are in progress. These
measurements already have been proven to be useful analyzing misbehaviors and various issues.
Therefore we aim for an automated, realtime approach for anomaly detection. As a requirement,
prototypes for standard workflows have to be examined. Based on measurements of several
months, different features of HEP jobs are evaluated regarding their effectiveness for data
mining approaches to identify these common workflows. The paper will introduce the actual
measurement approach and statistics as well as the general concept and first results classifying
different HEP job workflows derived from the measurements at GridKa.

1. Introduction
The increase in opportunistic resource usage [1] and federated storage [2, 3, 4, 5] in different
computing models of WLCG communities requires network-centric monitoring techniques.
Different approaches dealing with this issue implemented user- and job-specific, or VO-specific
monitoring [6, 7, 8]. Others deploy agents to data servers of federations itself [9]. Additionally
there are mediating [10, 11] and aggregating [12] approaches for the different techniques. But
none of the aforementioned approaches tracks the logical connections between a single job and its
data transfers. This might be derived by accumulating data flow centric approaches measuring
traffic for data federations with job-specific information. However, this is prone to errors but
more importantly incomplete. The measurement of data flows requires knowledge about data
servers, so opportunistic resources and data outside of data federations is not included in such
measurements. Especially in data centers operating a batch system with commodity hardware,
it is essential to know about the logical connections. As the network is shared by thousands of
batch jobs and users, a differentiation and metric for job-specific network usage is desirable.

For this goal to be achieved a monitoring tool has been implemented at the GridKa data and
computing center profiling data flows of WLCG batch jobs (section 2). In addition, first toy
analysis show the relevance of measured data (section 3) to gain experience in identifying access
patterns and estimating data transfers to finally understand data flows.

2. Monitoring the traffic of batch jobs
Existing monitoring tools in use at GridKa Tier 1 – including Cacti R© [13], Icinga [14],
Ganglia [15], and Univa Grid Engine [16] – deliver fine grained information about network
traffic regarding different ports, the accumulated traffic by rack, or node and different services
and alarms based on the data. But they are not capable of measuring network traffic on batch job
level. As existing batch system monitoring and related system monitoring tools do not support
measurements at batch job level, a new tool has been developed and put into operation at the
GridKa Tier 1 center for monitoring continuous data streams and characteristics of WLCG jobs
and pilots.

The design and implementation of the tool is based on C/C++. It has been modeled based
on the OpenSource tool NetHogs [17]. NetHogs groups bandwidth by process instead of breaking
traffic down per protocol or subnet. It does not rely on a special kernel module to be loaded
but the Linux operating system and libpcap [18]. Libpcap is a system-independent interface
for packet capturing in the user space. Network packets are copied into a buffer for further
analysis. By utilizing libpcap, UDP and TCP network packets can be analyzed and due to
procfs connections can be tracked. As NetHogs itself has not been implemented with monitoring
in mind it can not be used directly for our purpose.

Important data to be analyzed is the destination IP and port as well as the source IP and
port. Those are needed for matchmaking each connection with the sockets located in procfs.
After the socket has been found the managing process needs to be identified. Therefore again the
procfs is being utilized. Each process itself is tracked while monitoring the network packets for
a fast identification and association to the batch job itself. Processes executed by root can also
be tracked but do not necessarily belong to the traffic of jobs. Therefore different configurations
for running the tool can be utilized.

2.1. Hardware and setup
The tool is currently running on two racks consisting of 32 worker nodes. Each worker node
has 24 job slots that need to be monitored in parallel. Long term measurements and data
collection are in progress. These measurements already have been proven to be useful analyzing
misbehaviors and various issues. Therefore we aim for an automated, realtime approach for
anomaly detection.

2.2. Data format
All data are time series regarding the actual network traffic (traffic rates, count of inbound and
outbound packets, destination and source IP as well as ports), relevant unix process information
(pid, ppid, uid) as well as information about the batch job itself (see figure 1). Every 20 seconds
a new record for accumulated traffic information is created. Relevant process information are
stored directly after the associated system event. For an improved data handling and analysis
there is additional metadata associated to the measurements. These are stored in an additional
database enabling a fast access to specific data.

3. Analyzing data flows of batch jobs
The actual measurements contain very detailed data as well as implicit tree structures of the
executed unix processes per job. Each job is defined by a single multidimensional time series
being correlated to the jobs on the same worker node and also to all other worker nodes inside
the GridKa. Thus, the creation and collection of monitoring data is one important component
of the monitoring chain. The other one is the data mining process to provide an insight into
usage patterns and create statistics.

Before actually performing a clustering to identify patterns inside the dataset, there is the
need to examine the general value and significance of the monitored data. For this purpose,

0.0

0.2

0.4

0.6

0.8

0

5

10

15

20

External Interface
Internal Interface

D
at

a
R

at
e

(M
Bs

<1
)

Traffic

Inbound

Outbound

0

5

10

15

U
nix Processes

0 2 4 6
Duration (h)

Pr

oc
es

se
s

Figure 1. For each job detailed information about inbound and outbound traffic on internal
and external interfaces, as well as running processes and metadata are available. The first plot
visualizes incoming and outgoing traffic for the external interface. The second plot visualizes
the same information but for the internal interface. The third plot displays the current number
of running processes with regard to their proportion of the current timeframe.

a toy analysis to classify the executing VO of a batch job was designed. By performing the
analysis it should be proven that the corresponding VO can be predicted by analyzing only
the measured traffic profiles with an efficiency and purity greater than 90%. This use case can
clearly be validated by verifying the monitored uid.

3.1. Preprocessing
To ensure the best quality of the model a filtering of batch jobs is performed in preprocessing.
Imbalanced data sets are a special case for classification problems. The class distribution is
not uniform and therefore complicates the data mining process, since standard classification
algorithms usually consider a balanced training set. To avoid biased results towards the majority
class only the four main LHC experiments ALICE, ATLAS, CMS, and LHCb were chosen
to be included in the final dataset. Additionally the matching jobs were evaluated for their
completeness: Unfinished jobs, misbehaving jobs as well as jobs with missing data should be
excluded. Missing data is recognized by reconstructing the unix process tree from the logs and
assigning the appropriate traffic. As soon as a parent process can not be found and the current
process is not the batch job shepherd itself, some data must be missing from the job. There
are also jobs whose processes run longer inside the system than the batch jobs itself. As this
behavior is not evaluated yet, those jobs also need to be excluded from the data set. Furthermore
short jobs like Service Availability Monitoring (SAM) [19] tests or pilots running into a timeout
are excluded by explicitly selecting jobs with a duration longer than 2.100 seconds.

From the whole variable space the following set of variables is included into the modeling:
connection category (internal or external interface), incoming and outgoing volume (kB),
incoming and outgoing rate (kB/s), duration and the job id itself.

The different variables are accumulated for every job so that each observation of a job consists
of a six-dimensional feature set. In figure 2 pair-wise scatterplots and densities are visualized
for selected features of the internal network interface.

Volume.In
10

20

30

0 10 20 30

Rate.In
5

10

0 5 10

Volume.Out
10

20

30

0 10 20 30

Rate.Out

5

10

15

0 5 10 15

Duration
2.5
5
7.5
10

0 2.5 5 7.5 10

CMSALICE LHCbATLAS

Figure 2. Scatter matrix visualizing selected scaled features for the internal network interfaces.
Below the diagonal pair-wise scatter plots of variables are presented. Above the diagonal the
density is shown. The colors represent the single experiments.

During data preprocessing care is taken that the data is normalized since the range of values of
raw data varies widely. The majority of classifiers calculate distance between points by distance.
If one of the features has a broad range of values, the distance will be governed by this particular
feature. By applying normalization each feature contributes approximately proportional to the
final distance. To this end, the standard value is calculated by applying (1) to each variable
j. Each value of variable j is centred around 0 by subtracting the mean µj and is additionally
weighted by the standard deviation σj .

zj =
xj − µj
σj

(1)

3.2. Training a decision tree classifier
For the actual test analysis a decision tree classifier is used. The classifier is capable of performing
multi-class classification by learning simple decision rules inferred from the data features. It was
chosen because decision trees are simple to understand, interprete, and by using statistical
tests the reliability of the resulting model can be validated. The analysis with the decision tree
classifier is done with the software RapidMiner [20]. RapidMiner is an integrated environment for
machine learning, data mining, predictive analytics, and business analytics. For measuring the
quality and especially the stability of the selected data mining model the dataset is separated into
three different and independent subsets: training data (60%), test data (20%), and validation

Table 1. Classification Performance Confusion Matrix visualizing the classification perfor-
mance for the validation set by using the learned decision tree classifier based on traffic patterns
of ALICE, ATLAS, CMS, and LHCb.

ALICE ATLAS CMS LHCb Efficiency (%)
Pred. ALICE 206 2 6 8 92.8
Pred. ATLAS 2 330 3 0 98.5
Pred. CMS 0 0 121 0 100.0
Pred. LHCb 1 1 2 154 97.5
Purity (%) 98.6 99.1 91.7 95.1

data (20%).
The model is built on the training set, refined with the test set and its quality is finally

estimated on the validation set. The data has been taken over a timespan of 15 days on six
different worker nodes. Three of them are located in an own rack respectively. The data set
is split by utilizing stratified sampling to obtain the original distribution of VOs in the data.
Stratified sampling is a sampling method that generates samples whilst maintaining the original
proportion of each class. This way the resulting data sets still represent the original distribution
of VOs. It is ensured that the validation set is entirely separate and distinct from the training
and test set to get an independent validation of the resulting model.

3.3. Evaluation
Table 1 displays the confusion matrix of classification performance on the validation set for the
resulting decision tree. Although the results outperform our requirements of 90% efficiency and
purity the effect of imbalanced data sets is still visible. The best results are gained for ATLAS
as most data was available. For ALICE important jobs are not considered in the analysis as
parts of analysis trains do not pass the preselection stop regarding the job duration. The specific
influence of pilots also has to be measured. It might influence the results as well. E. g. some of
the jobs of CMS are no regular jobs but pilots.

Summarizing, this first test analysis shows that traffic data of batch jobs seem to be a good
indicator for further analysis. But to improve the performance and ensure comparability of
different data sets substructures need to be recognized.

4. Discussion and final remarks
The actual measurements and analysis undertaken at the GridKa Tier 1 center show that
network traffic profiles of WLCG batch jobs are a good indicator to predict the VO ownership
and therefore there is some good indication that network patterns themselves might be a good
indicator for clustering. The data being taken is dependent on the actual community needs and
evolution of computing models in use. Changes might therefore invalidate previously discovered
patterns. As a result, there is a need for incremental methods that may update existing models
and still evolve and update with temporal changes in data.

Nonetheless, pilots are currently not taken into account correctly. They are treated as single
jobs but instead they are local batch systems themselves [21]. By introducing some further
analysis to detect actual jobs inside the pilots might even further improve the classifier.

Acknowledgments
The authors wish to thank all people and institutions involved in the project Large Scale Data
Management and Analysis (LSDMA), as well as the German Helmholtz Association and the
Karlsruhe School of Elementary Particle and Astroparticle Physics (KSETA) for supporting
and funding the work.

References
[1] Kreuzer P et al. 2014 Journal of Physics: Conference Series 513 062028
[2] Bauerdick L et al. 2012 Journal of Physics: Conference Series 396 042009
[3] Gardner R et al. 2014 Journal of Physics: Conference Series 513 042049
[4] Bonacorsi D 2012 CMS storage federations Nuclear Science Symposium and Medical Imaging Conference

(NSS/MIC), 2012 IEEE (IEEE) pp 2012–2015
[5] Bloom K and The CMS Collaboration 2014 Journal of Physics: Conference Series 513 042005
[6] Lorenz D et al. 2009 Future Generation Computer Systems 25 308–314
[7] Arkhipkin D, Lauret J and Zulkarneeva Y 2014 Journal of Physics: Conference Series 513 032002
[8] Legrand I et al. 2009 Computer Physics Communications 180 2472–2498
[9] Andreeva J et al. 2014 Journal of Physics: Conference Series 513 032004

[10] Cooke A W et al. 2004 Journal of Grid Computing 2 323–339
[11] Aiftimiei C et al. 2008 Journal of Physics: Conference Series 119 062003
[12] Andreeva J J et al. 2007 Experiment Dashboard: the monitoring system for the LHC experiments GMW

’07: Proceedings of the 2007 workshop on Grid monitoring (New York, New York, USA: ACM) pp 45–49
[13] Cacti Group 2013 Cacti R©- the complete rrdtool-based graphing solution. URL http://www.cacti.net

[14] Icinga Project 2014 Icinga — open source monitoring. URL https://www.icinga.org

[15] Massie M L, Chun B N and Culler D E 2004 Parallel Computing 30 817–840
[16] Univa Corporation 2014 Univa products: Grid engine software for workload scheduling and management.

URL http://www.univa.com/products/grid-engine.php

[17] Engelen A 2013 Nethogs: What program is using that bandwidth? URL http://nethogs.sourceforge.net

[18] 2014 Tcpdump/libpcap public repository URL http://www.tcpdump.org

[19] Duarte A et al. 2008 Journal of Physics: Conference Series 119 052014
[20] RapidMiner 2014 Predictive analytics, data mining, self-service, open source - rapid miner. URL

http://rapidminer.com

[21] Thain D, Tannenbaum T and Livny M 2005 Concurrency and Computation: Practice & Experience 17
323–356

