
Monitoring of IaaS and scientific applications on the

Cloud using the Elasticsearch ecosystem

S Bagnasco1, D Berzano2, A Guarise1, S Lusso1, M Masera1,3, S
Vallero1,3

1Istituto Nazionale di Fisica Nucleare, Via Pietro Giuria 1, 10125 Torino, IT
2 CERN - European Organization for Nuclear Research, CH-1211 Geneva 23, CH
3 Dipartimento di Fisica, Università degli Studi di Torino, Via Pietro Giuria 1, 10125 Torino,
IT

E-mail: svallero@to.infn.it

Abstract. The private Cloud at the Torino INFN computing centre offers IaaS services to
different scientific computing applications. The infrastructure is managed with the OpenNebula
cloud controller. The main stakeholders of the facility are a grid Tier-2 site for the ALICE
collaboration at LHC, an interactive analysis facility for the same experiment and a grid Tier-2
site for the BES-III collaboration, plus an increasing number of other small tenants. Besides
keeping track of the usage, the automation of dynamic allocation of resources to tenants requires
detailed monitoring and accounting of the resource usage. As a first investigation towards this,
we set up a monitoring system to inspect the site activities both in terms of IaaS and applications
running on the hosted virtual instances. For this purpose we used the Elasticsearch, Logstash
and Kibana stack. In the current implementation, the heterogeneous accounting information is
fed to different MySQL databases and sent to Elasticsearch via a custom Logstash plugin. For
the IaaS metering, we developed sensors for the OpenNebula API. The IaaS level information
gathered through the API is sent to the MySQL database through an ad-hoc developed RESTful
web service, which is also used for other accounting purposes. Concerning the application level,
we used the Root plugin TProofMonSenderSQL to collect accounting data from the interactive
analysis facility. The BES-III virtual instances used to be monitored with Zabbix, as a proof of
concept we also retrieve the information contained in the Zabbix database. Each of these three
cases is indexed separately in Elasticsearch. We are now starting to consider dismissing the
intermediate level provided by the SQL database and evaluating a NoSQL option as a unique
central database for all the monitoring information. We setup a set of Kibana dashboards with
pre-defined queries in order to monitor the relevant information in each case. In this way we
have achieved a uniform monitoring interface for both the IaaS and the scientific applications,
mostly leveraging off-the-shelf tools.

1. Introduction
The INFN-Torino computing centre hosts a private Cloud infrastructure, which provides IaaS
services to different scientific computing applications [1]. The infrastructure is managed with
the OpenNebula cloud controller [2]. The main stakeholders of the facility are a grid Tier-2 site
for the ALICE collaboration at the CERN LHC, an interactive analysis facility for the same
experiment and a separate grid site for the BES-III collaboration. Moreover, the centre offers
virtualised batch farms on-demand to a number of smaller local tenants, such as a theory group

Monitoring IaaS and scientific applications on the Cloud!
 using the Elasticsearch ecosystem

The present work is partially funded under contract 20108T4XTM of Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale (Italy).!

S. Bagnasco1, A. Guarise1, S. Lusso1, S. Vallero2

1) Istituto Nazionale di Fisica Nucleare 2) Università degli Studi di Torino

Motivations The Elasticsearch ecosystem

IaaS

Application

DB

Monitoring

OpenNebula

ALICE Virtual
Analysis Facility

(Root)
BESIII Tier2

Zabbix DB
(MySQL)

Custodial
Accounting DB

(MySQL)

(http interface)

RESTful API + ActiveMQ

TProofMonSenderSQLZabbix

Figure 1. Set-up of the monitoring framework for IaaS and applications at the INFN-Torino
private Cloud.

and the Compass collaboration, and single virtual machines tailored to the needs of specific use-
cases (e.g. nuclear plant simulations). We are working to achieve the complete automation of
resources allocation, which is already fulfilled in the case of the ALICE Virtual Analysis Facility
(VAF) [3].

Within this scenario, a detailed monitoring and accounting of resource usage is both
mandatory, not least for billing purposes, and challenging because of the heterogeneous data
sources. For instance, we need to gather information at the IaaS level (from the cloud controller)
and at the application level (e.g. Root [4]) and possibly exploit the data coming from other tools
already in use to monitor some application on our Cloud (i.e. Zabbix [5]). Our goal is to achieve
a uniform and user-friendly monitoring interface as a single entry point to these miscellaneous
data. This paper illustrates how we set up a monitoring framework based on the Elasticsearch
[6], Logstash [7] and Kibana [8] stack.

2. Implementation
In the current implementation, the heterogeneous accounting data is fed to different MySQL
databases and sent to Elasticsearch via Logstash. We configured a set of Kibana dashboards
with pre-defined queries in order to display the relevant information in each case. The set-up is
illustrated in Figure 1 and explained in more detail in the following sub-sections.

2.1. The Elasticsearch ecosystem
The Elasticsearch ecosystem is composed by Elasticsearch (ES), Logstash and Kibana and it is
generally referred to as the ‘ELK stack’.

ES is a search and analytics engine built on top of the Apache Lucene information retrieval

library (Apache open source license). It is document-driven: entries are stored as JSON
documents and all fields can be indexed and used in a single query. In our set-up, each application
is indexed separately. ES also allows for full-text search on unstructured data, though in our
specific case this feature is not fully exploited. Moreover, ES is API driven and can be interfaced
with any RESTful API using JSON over http.

Logstash is an open source tool used to collect and parse events and logs to a central service.
It can be easily customised via plugins for input, output and data-filters. In order to fit Logstash
into our set-up we have developed only a simple plugin to retrieve input data from a MySQL
database and a set of configuration files to customise data indexing (one for each application we
wished to monitor).

Kibana is the official GUI to display and search ES data. The software could be exposed with
any web server, we chose Apache, and no installation is required. Since Kibana does not provide
any authentication/authorisation mechanism, these should be implemented at the level of the
web server. Kibana has an easy search syntax to query ES. The creation of custom interactive
dashboards can be achieved in few mouse clicks, without any prior GUI programming knowledge.
This feature makes it a good candidate for provisioning monitoring-as-a-service to the Cloud
tenants. Moreover, Kibana provides a set of useful pre-defined plot types like pies, histograms
or trends.

The ELK stack was our first choice for implementing the monitoring infrastructure because
it is open source, it provides most of the needed features out of the box and it is relatively easy
to configure and use. So far, this solution has proven to be suited for our purposes.

2.2. Data preservation: the SQL backend
Monitoring data are stored on a high-availability MySQL server prior to be inserted in the ES
engine. This might be seen as a redundant step since data are partially duplicated between
the database and ES. Indeed, ES itself can be configured as a fully-fledged (NoSQL) database
cluster using its built-in high-availability features. However, in order to ensure flexibility and
modularity to our monitoring system, we chose to use ES as a pure search engine with a simple
single-node configuration and to delegate data preservation to the MySQL database. With the
use of a standard and widely used back-end solution we will be able to move seamlessly away
from the ELK stack without losing historical data, should it prove itself not to be the optimal
tool. Moreover, the main application hosted at our Cloud besides the Tier-2 sites (i.e. the VAF)
relies on Proof [4], which comes with a built-in plugin to send monitoring data to a SQL database
at the end of each query. We preferred to avoid writing a custom plugin fitting explicitly our
specific monitoring solution.

2.3. Sending data to the database
For the IaaS metering, we developed sensors for the OpenNebula xml-rpc API. The IaaS level
information gathered through the API is sent to the MySQL database through an ad-hoc
developed RESTful web service, which is also used for accounting purposes. The service relies
on the ActiveMQ messaging server to asynchronously and efficiently feed metering records to
the database. A similar application is also being developed for billing. The relevant quantities
that we feed to the database are the resource usage per tenant/group in terms of number of
virtual machines, number of cores, memory and ephemeral disk space.

Concerning the application level, we use the Proof plugin TProofMonSenderSQL to collect
accounting data from the interactive analysis facility. At the end of each user query, data are
gathered from the worker-nodes to the Proof master and sent to the database with a standard
MySQL client/server protocol. In this case, we also monitor some additional observables such as
e.g. the number of workers, the datasets analysed or the number of events processed. Moreover,
since the BES-III Tier-2 site used to be monitored with Zabbix, as a proof of concept we also

Figure 2. Partial view of the Kibana dashboard for the ALICE Analysis Facility at the INFN-
Torino computing centre.

use the data from the Zabbix database. In this case we can get even more refined information
such as resource consumption for specific processes, e.g. the BES-III Offline Software System
(BOSS).

3. Custom dashboards
At present, the monitoring framework described in this paper is used to display data coming
from the cloud controller (both from the accounting service and the test version of the billing
service), the VAF and the BES-III Tier-2. Each use-case has its own Kibana dashboard.

As an example, in Figure 2 we show a snapshot of part of the VAF dashboard. The top-most

plot is a terms panel, which displays the results of an ES facet as a bar chart. By mouse-clicking
on a user’s bar, only entries for that user are displayed in all other panels.
The second top-most plots are histogram panels, showing the number of workers requested by
each user and the average CPU efficiency as a function of the query time (similar plots for the
memory usage on the master/workers are hidden in the figure). The plots’ time-range can be
easily selected by dragging with the mouse on the corresponding axis. This operation also sets
the desired time-range on all other plots in the dashboard. In order to draw a separate line for
each user in the plots, we have saved a set of pre-defined ES queries, one for each user, and
configured Kibana in order to show them all in the same panel.
In the bottom-most row one can see some information concerning the datasets analysed: the
LHC data-taking period flag, the run number and the type of file analysed. By selecting e.g. one
data-taking period in the bottom-left panel, one automatically gets a list of users who analysed
it in the top-most panel.

Similar dynamic dashboards can be set-up in few minutes without any programming, only a
good knowledge of the back-end database schema is required.

4. Summary and outlook
At the INFN-Torino computing centre we have set-up a uniform monitoring interface for both the
IaaS and the scientific applications, mostly leveraging off-the-shelf tools. The infrastructure relies
on a SQL database back-end for data preservation and to ensure flexibility to choose a different
monitoring solution if needed. We are now starting to consider dismissing the intermediate level
provided by the SQL database and evaluating a NoSQL option as a unique central database for
all the monitoring information.
For the IaaS accounting we have developed a custom RESTful web service to manage and query
the database, which relies on a message queue to transport usage records.

We are currently working on a billing system for our private Cloud, which also relies on the
ELK stack in its graphical interface.
The next step will be to define a model for monitoring-as-a-service, based on the tools described
in this paper, which the Cloud tenants could easily configure to suit their needs.

Acknowledgements
The present work is partially funded under contract 20108T4XTM of Programmi di Ricerca
Scientifica di Rilevante Interesse Nazionale (PRIN), Italy.

References
[1] Bagnsco S, Berzano D, Brunetti R, Lusso S and Vallero S 2014 Journal of Physics: Conference Series 513

032100
[2] Moreno-Vozmediano R, Montero R S and Llorente I M 2012 IEEE Computer 45 65-72
[3] Berzano D, Blomer J, Buncic P, Charalampidis I, Ganis G, Lestaris G and Meusel R 2014 Journal of Physics:

Conference Series 513 032007
[4] Brun R and Rademakers F 1997 Nuclear Instruments and Methods in Physics Research A 389 81-86
[5] Zabbix [http://www.zabbix.com/]
[6] Elasticsearch [http://www.elasticsearch.org]
[7] Logstash [http://logstash.net]
[8] Kibana [http://www.elasticsearch.org/overview/kibana]

