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Abstract. The high luminosity that will be reached in the new generation of High Energy
Particle and Nuclear physics experiments implies large high background rate and large tracker
occupancy, representing therefore a new challenge for particle tracking algorithms. For instance,
at Jefferson Laboratory (JLab) (VA,USA), one of the most demanding experiment in this
respect, performed with a 12 GeV electron beam, is characterized by a luminosity up to
1039cm−2s−1. To this scope, Gaseous Electron Multiplier (GEM) based trackers are under
development for a new spectrometer that will operate at these high rates in the Hall A of JLab.
Within this context, we developed a new tracking algorithm, based on a multistep approach:
(i) all hardware - time and charge - information are exploited to minimize the number of hits
to associate; (ii) a dedicated Neural Network (NN) has been designed for a fast and efficient
association of the hits measured by the GEM detector; (iii) the measurements of the associated
hits are further improved in resolution through the application of Kalman filter and Rauch-
Tung-Striebel smoother. The algorithm is shortly presented along with a discussion of the
promising first results.

1. The Tracking Challenge
We developed a new charged particle tracking algorithm, able to operate in high luminosity
experiments such as those at Jefferson Laboratory (JLab) (VA,USA). In particular, the algorithm
is designed for the experimental Hall A in JLab, where an hybrid tracker has been developed
to optimally exploit the new 12 GeV, high intensity, electron beam. The tracker consists of
six large GEM chambers [1] and two small planes of Silicon microstrip Detectors (SIDs). The
GEM tracker will be placed in the Super Big Bite Spectrometer (SBS) (see, e.g., Fig. 1), after a
momentum analyzing dipole, while the silicon tracker will be sitting very close to the scattering
chamber, in order to increase the tracked flying path and the lever arm for better tracking. Each
GEM chamber is composed (Fig. 2) by three 40 × 50 cm2 GEM individual modules, having
three GEM foils, and with two-dimensional strip readout, with expected spatial resolution of
about 80 µm.
In the most demanding experiment (the measurement of the proton form factors at high
momentum transfer [2]), we expect almost 20 kHz (the coincidence trigger rate of the elastically
scattered electron and proton) of signal and 400 kHz/cm2 of background hits on each chamber
(γ, e, π+,−); the hits rates in a cone of 10 cm2 in the first GEM plane are of 1 signal hit plus



Figure 1. Layout of the SBS spectrom-
eter in Jefferson Lab Hall A. Figure 2. Schematic diagram of

the 3-GEM foils detector.

Figure 3. Time evolution of the charge coming from the strips of the GEM chamber for three
different events: left a background particle uncorrelated to the trigger (starting at time = 0 ns);
center a signal particle correlated to the trigger; right a combination of two particles (background
and signal).

roughly 100 hits of background. To cope with these high rates of hits, we developed a new
multistep tracking algorithm, based on (i) “hardware reduction”, (ii) a Neural Network (NN)
for a fast “association of hits”, and (iii) Kalman filter for “precise tracking”, as explained in
what follows.

Hardware Reduction We simulated the response of the electronics to charge deposits of
GEM chambers. In particular, the protons represent the signal, whereas photons or charged
particles (electrons or pions) account for background. In Fig. 3, the time evolution of the
signals registered by the electronics is shown: the time evolution of proton signals develops
around 0 ns (25 ns maximum jitter distribution is included in the simulation), having been
synchronized with the trigger starting at 0 ns by definition. Background hits are uncorrelated
with the trigger. This simulation has been performed with Geant4 [3], along with a custom,
realistic digitization algorithm transforming the energy deposited by the particle into an electric
discharge in the GEM chamber and then into an electronic signal. This temporal correlation,
as well as x/y charge correlation, are used to significantly reduce the number of hits passed to
the second step of the procedure.

Association of hits Lots of successful applications of artificial NN’s in High Energy and
Nuclear Physics have been realized in the last two decades. The possibility to use an Hopfield-like



network in track finding problems has been firstly demonstrated in [4, 5]. In this proceeding, we
present the preliminary results obtained with a NN defined within the framework of Mean Field
Theory (MFT). Here we recall the essential features of a NN in MFT: neurons Sij correspond
to connections between two hits, i → j, belonging to two adjacent planes. Sij assume binary
values (0 - connection off, 1 - connection on), but, in MFT, their values are permitted to range
continuously ∈[0,1], and to make a clear distinction with the digital case, we use the notation
Vij . In order to connect a neuron to another, namely i→ j → l, it is necessary to introduce the
so called synaptic strengths, formally quadri-dimensional Tijkl, with the constraint j = k. To
this respect, two essential ingredients are the lengths of two adjacent segments rij , rjl and the
angle between them θijl. The general features of the MFT approach remain the same, but, in a
bi-dimensional case, we can write
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It is important to point out that the particular definition of the energy function E is a matter
of choice and it depends strictly on the particular features of the problem. In our case,
we have 6 subsequent tracking planes, spanning a certain angular region, which is crossed
by a heavy number of charged particles, whose trajectories are approximately straight lines
(magnetic field is negligible in the tracker region). We define an energy function able to
describe and discriminate the trajectories even when they occur in a very small angular region
(high background conditions). Given a hit i in a certain plane p (from first to penultimate,
p = 1, ..., n − 1), we consider connections i → j to hits belonging to the next plane, where
j ∈ p + 1, and from this to the subsequent plane (j → l, where l ∈ p + 2). These requirements
are encoded in the energy function as:
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where dG is the distance between two tracking planes, whereas rij , rjl and θijl are the segment
lengths between the ij, jl hits and the angle between them, respectively; the second term of
the ‘cost’ part, comprises the so called ‘firing thresholds’ Iij = (dG cos θijlδli/(rij + rjl)), to
correctly weight the connections (neurons) at the edge planes. In the ‘constraint’ part, we
assume a bifurcation inhibitor by using a Lagrange multiplier α.
The energy function (2), and, in general, any cost term based on trigonometric functions, works
well if one has to consider tracks separated enough in space and cases in which the occupancy of
the planes (namely the density of hits) is not too high. On the other hand, these two conditions
are not encountered in the high luminosity experiments. To recover the full discrimination power
of the energy function even in the case of small spatial region, we propose to use a novel approach,
based on an affine scaling transformation, that preserves the linearity of trajectories. This has

been done by setting r′ij ≡ Sxy(ξ)rij =
√
ξ2∆x2ij + ξ2∆y2ij + ∆z2ij , where ξ is a continuous

parameter ∈ [1,+∞). One has to apply this transformation to the cost term cos θijl/(rij + rjl)
present in Eq. (2). In our case, the optimal value that distinguishes more effectively the ‘on’
and ‘off’ connections in the energy cost term, was found to be ξ ≈ 100. The introduced affine
scaling has revealed very effective, and guides the NN to fast convergence. As illustrated in Fig.
4, the energy decreases to a plateau value (and it behaves similarly to a Lyapunov function)
as well as the convergence

∑
ij |Vij(t+ 1)− Vij(t)|, as a function of the number of sweep cycles

t1. Correspondingly, all the neurons saturate to values close to 0 (if connections are ‘off’) or

1 After each sweep cycle, a full asynchronous updating of all the neurons is completed



close to 1 (if ‘on’), as shown in Fig. 5. Common difficulties in practical applications, arise from
the arbitrary choice of the NN parameters (Lagrange multipliers, temperature, scaling variable).
We provided general criteria which allow the convergence of the algorithm and an effective and
robust association of the hits: for instance, we used a ‘Network digitalization’ (see, e.g., [6])
for setting the Lagrange multiplier, and a technique similar to an ‘a posteriori annealing’ (as
suggested in [7]) to investigate the dependence on temperature of the system. We then applied

Figure 4. (top) energy and (bottom)
variation of the average variation of neuron
activities as a function of the sweep cycles.

Figure 5. Neuron activity. In MFT,
values are continuous and range ∈ [0,1].
After a certain number of sweep cycles,
all the neurons stabilize. A threshold
of 0.5 is chosen, and the neurons are
transformed to binary values, 0 or 1,
depending on whether smaller or larger
than the threshold.

our NN based tracking algorithm to the case of JLab12 experiments. As mentioned earlier,
the typical rates expected in an area of 10 cm2 in the first tracking plane are 1 signal (proton)
track from the interaction vertex, 1 charged background particle, few background photons per
plane, and about 100 ghost hits per plane, which arise from combinatorial x/y strips association.
Notably, as shown in Fig. 6, a 97% tracking efficiency is obtained with 100 ghost hits per plane.

Figure 6. Track association efficiency
as a function of the number of ghost
hits. The NN parameter settings were
determined by optimizing the track
finding efficiency for the case of 100
ghost hits (97%). In all the other cases,
efficiency always exceeds 97% and it is
larger than 99% below 50 ghost hits.

Precise Tracking Once the association is accomplished, one can provide even more accurate
measurements of the associated hits through filtering techniques. We used both Kalman filter
(KF) [8], to filter the tracks in the forward direction, and Rauch Tung Striebel (RTS) smoother
[9], for the reverse backward filtering. It is worth mentioning here that these are basically



Bayesian algorithms, that combine both experimental and theoretical information, starting from
a measured hit, and according to a certain evolution model, one can infer the predicted hit in
the subsequent plane, and compare it to its effective measurement in this plane. In this way, one
can easily obtain a posterior distribution, from which the most likely ‘true’ position of the hit
is estimated. We simulated a large number of correctly associated tracks, in order to calculate
the accuracy of the filters (KF+RTS) in rather realistic experimental conditions. As reported in
Fig. 7, the high accuracy obtained by combining the filters method is ∼ 10 µm, to be compared
to the hit spatial resolution of about 80 µm.

Figure 7. Distance between KF
filtered and true hits (blue) and distance
between KF+RTS filtered and true
hits (gray) for 6000 hits belonging to
associated tracks. The accuracy of the
combined KF+RTS filters method is
∼10 µm.

2. Conclusions
The overall procedure (NN+filtering) looks terrific promising, with high performances both in
terms of association efficiency (≥ 97%), provided by the NN, and of reconstruction accuracy
(∼ 10 µm, a factor 8 smaller than GEM designed spatial resolution), this latter provided by
the combined filters. Next development will concentrate on the comparison of NN with other
“standard” algorithms. Furthermore, a study and optimization of the computational time is also
compulsory. Multiple scattering is under implementation for a deeper testing of the KF+RTS
filtering technique, which has proved to be effective on the associated hits of the NN algorithm.
Study of the refined and optimized procedure on real data will be the ultimate goal.
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[7] Peterson C and Söderberg B 1989 International Journal of Neural Systems 1 3–22
[8] Kalman R E 1960 Journal of Fluids Engineering 82 35–45
[9] Rauch H E, Striebel C and Tung F 1965 AIAA journal 3 1445–1450


