Redberry: a computer algebra system designed for

tensor manipulation

Stanislav Poslavsky
Institute for High Energy Physics, Protvino, Russia
SRRC RF ITEP of NRC Kurchatov Institute, Moscow, Russia

E-mail: stvlpos@mail.ru

Dmitry Bolotin
Institute of Bioorganic Chemistry of RAS, Moscow, Russia

E-mail: bolotin.dmitriy@gmail.com

Abstract. In this paper we focus on the main aspects of computer-aided calculations with
tensors and present a new computer algebra system Redberry which was specifically designed
for algebraic tensor manipulation. We touch upon distinctive features of tensor software in
comparison with pure scalar systems, discuss the main approaches used to handle tensorial
expressions and present the comparison of Redberry performance with other relevant tools.

1. Introduction

General-purpose computer algebra systems (CASs) have become an essential part of many
scientific calculations. Focusing on the area of theoretical physics and particularly high energy
physics, one can note that there is a wide area of problems that deal with tensors (or more
generally — objects with indices). This work is devoted to the algebraic manipulations with
abstract indexed expressions which forms a substantial part of computer aided calculations with
tensors in this field of science. Today, there are many packages both on top of general-purpose
systems (Maple Physics [1], xAct [2], Tensorial etc.) and standalone tools (Cadabra [3, 4],
SymPy [5], Reduce [6] etc.) that cover different topics in symbolic tensor calculus. However, it
cannot be said that current demand on such a software is fully satisfied [7].

The main difference of tensorial expressions (in comparison with ordinary indexless) lies
in the presence of contractions between indices. This additional structure must be reflected in
computer representation of tensorial expressions. It makes the existing pure list-based CASs not
a good basis for implementing algorithms for tensor manipulation [4]. Because of contractions,
implementation of even such a fundamental atomic operation like expression comparison becomes
much more complicated, which in turn complicates implementation of general operations such
as substitutions, reduction of similar terms etc. Since solution of a real-world problem comprises
a long sequence of such common operations, their performance is critical for obtaining of result
in a reasonable time.

Here we present Redberry — a computer algebra system for algebraic manipulations with
tensorial expressions. A comprehensive documentation accompanied by lots of examples can be



found on the Redberry website http://redberry.cc and in Ref. [8]. This paper gives a very brief
overview of features specific for tensorial software, approaches used in the field and describes
Redberry in comparison with other systems putting a particular stress on performance.

2. Specific features of tensorial CAS
The presence of indices brings an additional complexity to tensorial expressions. It makes the
algorithms used in pure scalar CASs inapplicable and thus requires fundamentally different
approach. Let’s consider few noteworthy aspects which set tensorial CAS apart from scalar
ones.

One of the most frequent operations arising in majority of computer-aided calcualtions with
tensors is automatic relabeling of dummy indices. Consider a trivial substitution:

R.5 = R“’aug into R, R™#

RM,,- R, #  (incorrect X) , R*,ar RP’g* (correct v)

One can see that substitution of r.h.s. without appropriate relabeling of dummy index p leads
to an indices clash. Thus correctness of CAS operations depends on its ability to automatically
resolve such conflicts (as shown).

Another nontrivial atomic operation is comparison or matching of tensorial expressions (this
operation is straightforward for scalar expressions). Consider a common simplification routine
— reduction of similar terms:

(1) A A" + A, AY = 24, AV (2)  Fapea FT F % — Fypoq FT4 FP ., =0

In both cases (and second one is really non trivial) CAS has to match dummy indices in order
to check that the summands are equal. The problem of comparison of indexed expressions is
very similar to a well known pattern matching problem from scalar CASs, while here it arises
even in simplest calculations.

Additional aspect of comparison emerges in substitutions where both free and dummy indices
must be matched. Consider for example a substitution:

FPFpy =T% — FPYFr Fg,  which gives T7, FF~.,.

The ability to define arbitrary permutational symmetries and antisymmetries of tensors is
required for nearly all calculations. The presence of symmetries significantly complicates issues
mentioned above. For example, supposing that Rupcq = Reday = — Rpacd One can check that

R4 R g0 R oy + Ry Ry Ryg" = 0.

Checking of this equality requires both matching of indices and considering information about
symmetries. Here is a more complicated example (suppose Wapcde = Webeda = Webade ):

(Wode”? + Woae” + Whea" + Wape” + Wae's?) (Wepnji + Wenpii + Weingi + Weenij + Wengi) —

(Whde" + Whae”* + Waea” + Wape" + Wae's?)) Wepnij + Wenpij + Weingi + Wenis + Wengi) = 0
(3)

This identity can be proved by using information about contractions of indices and symmetries
of tensor W4 without expansion of brackets.


http://redberry.cc

3. A brief overview of Redberry

Today there are a lot of packages written both on top of general CASs and standalone
systems that cover different topics in computer computations with tensors. The most relevant
packages that are actively supported are xAct [2] (open-source, written on top of Mathematica),
Maple Physics [1] (commercial, not open-source) and Cadabra [3] (open-source, standalone).
These packages well cover most of the features described above.

On the other hand, many modern calculations in physics involve extremely huge expressions,
thus performance of CAS becomes critical. This aspect is not well addressed in the existing
software. Redberry is aimed at solution of large scale problems with millions of tensorial terms
in a reasonable time. For example, calculation of one-loop counterterms of gravitational field®
requires processing of about 700 000 tensorial terms with about 8 multipliers and about 10
indices per term; Redberry solves this problem in less than 8 minutes (on a standard laptop).

Another example that one can easily check using mentioned packages is the identity (3).
Time used by different systems to prove it is the following: Redberry — 2 ms, Cadabra — 180
ms, xAct — 180 ms, Maple Physics — 200 ms. In this example Redberry shows nearly 100 fold
higher performance. Moreover, Redberry does not perform expansion of brackets while other
systems do.

Along with high performance Redberry provides a comprehensive set of both general-purpose
and HEP-specific tools for tensor handling which include: native dummy indices handling
(particularly automatic resolving of clashes), support of arbitrary permutational symmetries,
extensive tools for simplification of tensorial expressions, multiple index types, IXTEX-style
input /output and a wide range of other tensor-specific transformations. Out of the box Redberry
provides instruments for computations in high energy physics including tools for Feynman
diagrams calculation (Dirac & SU(N) traces, simplification of Levi-Civita tensors etc.) and
for calculation of one-loop counterterms in quantum field theory in curved space-time.

Redberry allows to use general purpose programming language equipped with a dozen of
computer algebra and particularly tensor-specific syntax constructions which facilitates common
usage as well as implementation of custom functionality for particular problems.

In order to demonstrate Redberry syntax let us consider a "toy” example. The following
example proves that (2 Raped R4 — Ruped R“de) = 0 where Rgpeq is a Riemann tensor by
using the identity Rapeq = (2 Raped + Racbd — Radbc) /3

1 // Setup symmetries

2 addSymmetries 'R_abcd', [[0, 2], [1, 311.p, -[[1, 01]1.p
3 // Define substitution

4 subs = 'R_abcd = (2*#R_abcd + R_acbd - R_adbc)/3'.t

5 // Input expression

6 expr = '2*R_abcd*R"acbd - R_pqrs*R"pqrs'.t

7 // Apply substitution and expand

8 expr = (subs & Ezpand) >> expr

9 println expr //prints zero

> 0

In line 2 we define symmetries by providing two generators of corresponding permutation group
written in disjoint cycle notation (.p converts list of integers into a Permutation object). In
line 4 and 6 we input substitution and target expression (.t converts string into a computer
object). Finally in line 8 we apply substitution and expand out brackets. The result is zero
since Redberry automatically reduces similar terms taking into account all symmetries.

! for details on one-loop calculations in Redberry see [8] and online documentation at http://redberry.cc


http://redberry.cc/documentation:guide:calculating_one-loop_counterterms

One can find lots of examples (including physical examples such as Feynman diagrams and
one-loop counterterms calculation) along with comprehensive documentation on the Redberry
website (http://redberry.cc).

4. Algorithms

Since the most frequently invoked atomic operation during any calculation is comparison
of expressions, its performance makes the main contribution to the overall performance of
CAS. This operation arises in such common simplification as reduction of similar terms. The
algorithms of tensor comparison (or matching) is the main topic in the field of tensorial CAS.

The existing systems (known to the authors) are based on the so-called indices
canonicalization approach [9, 10]. This procedure brings indices of products into unique canonical
order using the information about symmetries of its multipliers; when indices of tensors are
brought into canonical form, it becomes trivial to test whether two expressions are equal. As it
is shown in [9, 10], this problem is equivalent to the problem of double coset enumeration which is
known to be N'P-hard (see Sec. 4.6.8 in [11]). Unfortunately, no satisfactory algorithm to solve
this problem has been found to date (see Sec. 4.6.8 in [11]). Importantly, indices canonicalization
works only with products of simple tensors, e.g. if product contains a sum one need to expand
out brackets first.

Redberry uses another approach to the problem which is
based on the idea that contractions between indices in product
constitutes a graph (see for example Fig. 1). From such point of
view the problem of testing whether two expressions are equal is
equivalent to problem of testing whether corresponding graphs
are isomorphic (this approach was discussed in [9], but was
not implemented in any CAS). While no worst-case polynomial-
time algorithms are known for the general Graph Isomorphism
(GI) problem, there are several algorithms which solve it very
effectively in all practical cases (see e.g. [12] and overview given in [13]). The GI algorithm
implemented in Redberry is specifically optimized for typical problems arising in physics (i.e.
when one needs to compare huge number of small graphs; see below).

In order to find out how Redberry performance compares to existing approaches we carried
out performance evaluation of Redberry, Cadabra (which is open source and uses the same
canonicalisation engine as Mathematica xAct ) and Maple Physics (commercial, implementation
is unknown). We performed two types of benchmarks.

In our first benchmark we measured performance of comparison operation. For this purpose,
we randomly generated sums of products of tensors? and measured time needed by each system
to obtain zero when subtracting it from itself rewritten in equivalent form by renaming dummies,
rearranging terms and shuffling indices according to symmetries. For example:

Figure 1: Graph representa-
tion of tensor Agh” Cp, Aua?

(F“VaTygwa’g + ...(99 /(</‘7n,s')> — (TVgTapWVpF,uay + ... (99 /,("/7//,5'/) =0

The results of our benchmarks are shown on Fig. 2. We analysed cases without and with
symmetries (symmetric or antisymmetric with respect to all indices of particular simple tensor;
in case with symmetries Maple failed to obtain zero on majority of examples, so it was excluded
from the benchmark). We found that in case without symmetries, both Redberry and Maple
have polynomial dependence on size of products (Fig. 2 left), while Cadabra has exponential; in
case with symmetries, both Cadabra and Redberry have exponential dependence in worst case,
but Redberry has better performance on larger problems. The dependence on the number of

2 all expressions used for benchmarks can be found at http://redberry.cc/documentation:benchmarks


http://redberry.cc
http://redberry.cc/documentation:benchmarks

indices (Fig. 2 right) in case without symmetries is also polynomial for Redberry and Maple and
exponential for Cadabra; on the other hand, the presence of symmetries almost does not change
the behaviour of Cadabra, while Redberry fails to simplify large expressions in a reasonable
time.

10% 10%

< Redberry sym o < Redberry sym
O  Cadabra sym o O  Cadabra sym
102l ¢ Redberry ¢ Redberry
= Maple o ® 101} = Maple
e (Cadabra <% e (Cadabra
L ]
10! . : ° .
w l ' %]
) e 30 g 100
g o o O 0 g 10
R s O Q0 4 B
g -8 v ¢ g e
q g g hd
=) I 1 1 "L o § o =
)
107! |II 8‘5%§%%§ ¢ " -
paste

1072 - 1072 - -
2 4 6 8 0 12 14 16 18 2 5 10 15 20 25 30 35 40 45

Average product size Average indices number

Figure 2: Dependence of time spent in collect routine on product size (left) and on
average number of indices in products (right). For these benchmarks we generated sums
(100 summands) of products of simple tensors, then subtracted it from itself (in equivalently
rewritten form: shuffled summands and multipliers, renamed dummy indices and interchanged
indices of simple tensors according to their symmetries) and measured time needed to obtain
zero. For Redberry and Cadabra we performed benchmarks both with (marked as ”sym” in
the legend) and without symmetries of simple tensors, while Maple was unable to simplify such
expressions in case with symmetries.

In the second benchmark we measured performance of the most common simplification
procedure — expand out product of sums and reduce similar terms (ezpand and collect). For
this benchmark we used sums of products of sums of products®. We applied ezpand and collect,
subtracted result from the initial expression and measured time needed by each system to obtain
zero. For example:

(Fu (TR 4 ) 4 ) (Bap (FP8Re ) ) x ()
- (FWT”BRWRWF”QRW + ) ~0

Fig. 3 shows the comparison of time spent in expand and collect operation for the same input
expressions for Redberry vs. Maple and for Redberry vs. Cadabra. On average in these
benchmarks Redberry is 38 times faster than Maple and 62 times faster than Cadabra.

5. Conclusions

In this paper we considered the main features of algebraic computer-aided manipulations with
tensors. We discussed two main approaches used for implementation of symbolic tensor algebra
and presented a new computer algebra system Redberry based on the alternative to common
approach for tensor handling. We demonstrated that Redberry outperforms other tools (Maple
Physics and Cadabra) in typical operations on large tensorial expressions. Further information
about Redberry including comprehensive documentation accompanied by lots of examples can
be found on the Redberry website http://redberry.cc and in Ref. [§]


http://redberry.cc

10% — — > > > 10°

10%F” 10%F”

,_
2
~

Cadabra, s
—
<
e

101

10727 ) 10727

L7 //’ // // e -3 // //’ ,/ // e
1073 1072 1071 100 10! 102 10% 10507 1072 1071 100 10" 10° 103
Redberry, s Redberry, s

Figure 3: Comparison of time spent in expand and collect routine for randomly
generated expressions. FEach input problem plotted as filled circle. Each plot represents
comparison of execution times needed to simplify input expression to zero between two systems
(left for Maple versus Redberry, right for Cadabra versus Redberry). Solid line corresponds
to equal execution times, dashed lines shows 10x, 100x, 1000x, etc. execution time ratio. For
benchmark presented here, Maple failed to obtain zero for more then 16% of input expressions,
this points are not presented on the left plot. On average in these benchmarks Redberry is 38
times faster than Maple and 62 times faster then Cadabra.

Acknowledgements
The authors would like to thank A. Kataev and V. Ilyin for valuable and stimulating discussions.
The work of S.P. was supported by the RFBR (grant #14-02-00096 A), grant of SAEC
“Rosatom” and Helmholtz Association. The work of D.B. was financially supported by RSCF
(grant #14-14-00533).

References
[1] Maple Inc Maple Physics homepage: hitp://www.maplesoft.com
| J Martin-Garcia zAct homepage: hitp://www.zact.es/
| Peeters K arXiv:hep-th/0701238
| Peeters K 2007 Comput. Phys. Commun. 176 550-558 arXiv:cs/0608005 [cs.SC]|
[5] SymPy Development Team SymPy homepage hitp://www.sympy.org
| Anthony Hearn REDUCE homepage: http://www.reduce-algebra.com
] Korol’kova A, Kulyabov D and Sevast’yanov L 2013 Programming and Computer Software 39 135-142 ISSN
0361-7688

[8] Bolotin D A and Poslavsky S V arXiv:1302.1219 [cs.SC]

[9] Rodionov A and Taranov A 1989 FEurocal ‘87 (Lecture Notes in Computer Science vol 378) ed Davenport
J (Springer Berlin Heidelberg) pp 192-201 ISBN 978-3-540-51517-3 URL http://dx.doi.org/10.1007/
3-540-51517-8_113

[10] Manssur L R U, Portugal R and Svaiter B F 2002 International Journal of Modern Physics C 13 859-879

[11] Holt D, Eick B and O’Brien E 2005 Handbook of Computational Group Theory Discrete Mathematics and
Its Applications (Taylor & Francis) ISBN 9781420035216

[12] McKay B D 1981 Congressus Numerantium 30 4587 10th. Manitoba Conference on Numerical Mathematics
and Computing (Winnipeg, 1980)

[13] McKay B D and Piperno A arXiv:1301.1493 [cs.DM]


http://www.maplesoft.com/support/help/Maple/view.aspx?path=Physics
http://www.xact.es/
http://arxiv.org/abs/hep-th/0701238
http://arxiv.org/abs/cs/0608005
http://www.sympy.org
http://www.reduce-algebra.com
http://arxiv.org/abs/1302.1219
http://dx.doi.org/10.1007/3-540-51517-8_113
http://dx.doi.org/10.1007/3-540-51517-8_113
http://arxiv.org/abs/1301.1493

