
Techniques and tools for measuring energy efficiency

of scientific software applications

David Abdurachmanov1, Peter Elmer2, Giulio Eulisse3, Robert
Knight4, Tapio Niemi5, Jukka K. Nurminen6, Filip Nyback6, Gonçalo
Pestana5 6, Zhonghong Ou6, Kashif Khan 5 6

1 Digital Science and Computing Center, Faculty of Mathematics and Informatics, Vilnius
University, Vilnius, Lithuania
2 Department of Physics, Princeton University, Princeton, NJ 08540, USA
3 Fermilab, Batavia, IL 60510, USA
4 Research Computing, Office of Information Technology, Princeton University, Princeton,
New Jersey 08540, USA
5 Helsinki Institute of Physics, PO Box 64, FI-00014, Helsinki, Finland
6 Aalto University, PO Box 11100, 00076 Aalto, Finland

E-mail: goncalo.pestana@aalto.fi

Abstract. The scale of scientific High Performance Computing (HPC) and High Throughput
Computing (HTC) has increased significantly in recent years, and is becoming sensitive to total
energy use and cost. Energy-efficiency has thus become an important concern in scientific
fields such as High Energy Physics (HEP). There has been a growing interest in utilizing
alternate architectures, such as low power ARM processors, to replace traditional Intel x86
architectures. Nevertheless, even though such solutions have been successfully used in mobile
applications with low I/O and memory demands, it is unclear if they are suitable and more
energy-efficient in the scientific computing environment. Furthermore, there is a lack of tools
and experience to derive and compare power consumption between the architectures for various
workloads, and eventually to support software optimizations for energy efficiency. To that end,
we have performed several physical and software-based measurements of workloads from HEP
applications running on ARM and Intel architectures, and compare their power consumption
and performance. We leverage several profiling tools (both in hardware and software) to extract
different characteristics of the power use. We report the results of these measurements and the
experience gained in developing a set of measurement techniques and profiling tools to accurately
assess the power consumption for scientific workloads.

1. Introduction
The Large Hadron Collider (LHC) [1] at the European Laboratory for Particle Physics (CERN)
in Geneva, Switzerland, is an example of a scientific project whose computing resource
requirements are larger than those likely provided in a single computer center. Data processing
and storage are distributed across the Worldwide LHC Computing Grid (WLCG) [2], which
uses resources from 160 computer centers in 35 countries. Such computational resources have
enabled the CMS [3] and ATLAS [4] experiments to discover the Higgs Boson [5, 6], for example.
The WLCG requires a massive amount of computational resources (250,000 x86 cores in 2012)
and, proportionally, energy. In the future, with planned increases to the LHC luminosity [7], the



dataset size will increase by 2-3 orders of magnitude, presenting even more challenges in terms
of energy consumption.

In order to find and develop better solutions for improving energy efficiency in High Energy
Physics (HEP) computing, it is important to understand how energy is used by the HEP systems
themselves. We describe several tools and techniques that facilitate researchers to reach that
goal.

As energy efficiency becomes a concern, new solutions have been considered to develop energy
efficient systems. One potential solution is to replace the traditional Intel x86 architectures by
low power architectures such as ARM. A comparison of the energy efficiency between ARMv7
and x86 Intel architecture is conducted in this article. The experiments use CMS workloads and
rely on the techniques and tools described earlier to perform the measurements.

This article is structured as following. Firstly, we describe where is energy consumed in a HTC
system and outline some of the tools and techniques available to measure and monitor energy
consumption on HTC systems (Section 2). Secondly, we present the results of a comparison
between ARMv7 and Intel Xeon architecture using CMS workloads (Section 3). Finally, we
present IgProf, a general purpose, open source application performance profile. In addition, we
describe its recent added energy profiling features and 64-bit ARM support.

2. Tools and techniques for energy measurement
When optimizing power usage, there are two granularities at which one can look at a computing
system. The coarser granularity takes into account the behavior of the whole node (or some
of its passive parts, e.g. the transformer) as part of a rack in a datacenter. This is usually
investigated when engineering and optimizing computing centers. Alternatively, a more detailed
approach is to look into the components which make up the active parts of a node, in particular
the CPU and its memory subsystem since these are responsible for a sizeable fraction of the
consumed power. They are also the place where the largest gains in terms of efficiency can be
obtained through optimizations in the software.

If one is simply interested in the coarse power consumption by node, external probing devices
can be used: monitoring interfaces of the rack power distribution units, plugin meters and non-
invasive clamp meters (allowing measurement of the current pulled by the system by induction
without making physical contact with it). They differ mostly in terms of flexibility. Their
accuracy is typically a few percent for power, whereas their time resolution is in the order of
seconds. This is more than enough to optimize electrical layout of the datacenters or to provide
a baseline for more detailed studies.

A alternative approach takes into account the internal structure of a computing element of an
HTC system, as shown in figure 1. Nowadays, every board manufacturer provides on-board chips
which monitor energy consumption of different components of the system. These allow energy
measurements of fine grained detail, as it is possible to individually monitor energy consumption
of components such as the CPU, its memory subsystem, and others. An example of this chip
monitors is the Texas Instruments TI INA231 [8] current-churn and power monitor which is
found on the ARMv7 developer board which we used for our studies. It is quite common in the
industry. Compared to external methods, these on-board components provide high accuracy
and reasonably high precision measurements (millisecond level).

A special and slightly different case of these on-board monitors is a new technology called
Running Average Power Limit (RAPL), provided by Intel beginning from the Sandy Bridge
family of processors.

Contrary to other solutions, which are implemented as discrete chips, RAPL is embedded
as part of the CPU package itself and provides information on the CPUs own subsystems. In
particular RAPL provides data for three different domains: package (pck), which measures
energy consumed by the system’s sockets, power plane 0 (pp0), which measures energy



Figure 1. Components that contribute for power consumption in HPC

consumed by the CPU core(s), and dram, which accounts for the sum of energy consumed
by memory in a given socket, therefore excluding the on-core caches [9]. As for the discrete
components case, the timing resolution of measurements is in the millisecond range [10]. This
is fine enough to permit exploiting such data to build an energy consumption sampling profiler
for applications, similar to how performance sampling profilers work (see section 4). Finally,
in addition to power monitoring of the sockets, RAPL can limit the power consumed by the
different domains. This feature, usually referred as power capping, allows the user to define
the average power consumption limit of a domain in a defined time window and allows more
accurate independent measurements of the non limited components.

3. Power efficiency measurements with x86-64 and ARMv7
In this section, we demonstrate the potential of some of the tools we previously described.
To that end, we perform several measurements of workloads from CERN, running on different
architectures. The workloads used in the experiment run on top of Intel x86-64 architecture,
traditionally used in HTC and data centers and 32 bit ARMv7 architectures (for similar studies
for 64bit ARMv8 and Xeon Phi, please refer to [11]). The ARM architecture, initially developed
for mobile devices, has been considered [12, 13] as a potential alternative to Intel in HTC, given
its energy efficient computing. We also present a brief comparison between ARM and Intel
architectures from the energy consumption perspective, based on the results obtained.

3.1. Tools and techniques
For the Intel architecture, we used the RAPL technology to perform measurements of the energy
consumed by the package, DRAM and cores (figure 1). The external measurements for the
baseline were performed using a rack PDU, which provides an online API to gather the energy
consumed by the system on the rack at a sampling rate of 1 second. For the ARM board, we



used the Texas Instrument power monitor chip TI INA231 which allows reading of the energy
consumed by the cores and dram at a sampling rate of microseconds. The chip was embedded in
the board from the vendor. For the external measurements, we used an external plug-in power
monitor with a computer interface for gathering and storing the results. In both cases we read
the data as it was exposed to the system via the sysfs / devfs knobs. The machine specifications
can be seen in figure 2.

Figure 2. Machine’s specifications

3.2. Experiment setup
The workload used for the experiments was ParFullCMS, a multi-threaded Geant4 [14]
benchmark application which uses a complex CMS geometry for its simulation. Using
ParFullCMS, we ran simulation tasks on both the Intel and ARM machines (figure 3). The
workflow was run several times with different number of threads in each machine. The number
of threads run in each experiment is chosen according to the number of the cores of the machines.

3.3. Analysis
As expected, the ARMv7 architecture shows encouraging results from the energy efficiency
perspective than Intel in all the experiments performed. Also as expected, both architectures
do not perform better when overcommitted (more threads than the physical number of cores).
Notice ARM results when overcommitted (8 threads) are much worse then Intel ones. This is
due to the relatively modest amount of available DRAM (figure 2), causing the machine started
swapping, greatly affecting performance. While this was expected, since the ARM system used
is just a development board for mobile applications, this is a clear indication that when doing
a final assessment of power efficiency for an architecture, one needs to have a full server-grade
system in order to make a proper comparison.

4. Profiling for power efficiency
The hardware components described above provide measurements that are related to the full
set of processes running on the machine. For the simple case where only a single benchmark
application is running, these can be used to make comparisons between architectures. A further
step is to try to see if there is a way to map the energy consumption measurements to functions
and methods within an executing process. Such a mapping would allow for optimizations of
the software itself. This kind of mapping can be done in two different ways, which we call
instrumentation and sampling profiling.

In the instrumentation case, effective readings of profiled quantities (e.g. energy
consumption), or quantities correlated with them (e.g. CPU power state transitions) are done
at the beginning and the end of a profiled task and the difference between the two is used to
estimate average power consumption over that period of time. By bookkeeping starting and
stop values for monitored tasks one can get a fairly complete picture of what is happening to
the system, provided the measured interval is large compared to the temporal precision of the
measure being done. This is both to avoid a large error on the average estimation and to reduce
performance overhead due to the measure itself.



Figure 3. Chip monitor and external measurements results. The results are shown according
to the relation events per number of cores of each machine and their absolute number of cores.

Sampling profiling, on the other hand, has a different approach where a given quantity is
sampled regularly and at each sample the measured quantity is accumulated until it overflows
a user provided limit. When this happens the profiler increments a counter for the process /
function being executed in that precise moment. Assuming that the distribution of where time
is spent in a system is constant over time (which is typically true for large data processing
tasks), such a sampling algorithm converges to the actual distribution of the measured quantity.
The advantage of this approach is that the fidelity of the measurement to first approximation
depends only on the number of samples made, regardless of the error on the profiled quantity.
This also allows minimizing the performance overhead by tuning the sampling period to be much
larger than the measurement itself.

IgProf is a general purpose, open source application performance profiler. It was developed
in HEP, but it is capable of profiling all types of software applications. The profiler has been
available on the x86 and x86-64 platforms since many years [15, 16], and recently we have also
ported it to ARMv7 and ARMv8. Moreover we have now added a statistical sampling energy
profiling module which provides function level energy cost distribution [17]. Such a module uses
the PAPI library to read energy measurements from the RAPL interface previously described.

To illustrate the new module, we use it to profile the memory benchmark STREAM [18]. Figure 4
compares the results from performance and energy profiling of the benchmarking tool. The X-
axis describes the four main functions contributing to the execution time and energy consumption
of the stream tool: Add, Copy, Triad and Scale. The left scale of the Y-axis and the perf ticks
series describe the execution time spent in each function, whereas the right scale of the Y-axis and
the nrg pkg, nrg pp0 and nrg pp1 series describe the amount of energy spent in each function.
The energy consumption of the processor package domain and the power plane 0 (describing the
CPU cores) seem to follow the time spent in the functions, whereas the energy consumption of
power plane 1 seems to be fairly constant to zero (describing the unused GPU) .

As we would expect from a simple benchmark, the profiling results of a simple single-threaded
application shows a correlation between the execution time and the energy spent in a function.
While the energy profiling module is now fully functional within IgProf, further work needs to
be done to tune the measurements and to gain experience with how to use the profiles obtained



0	  

100	  

200	  

300	  

400	  

500	  

600	  

700	  

0	  

5	  

10	  

15	  

20	  

25	  

30	  

35	  

40	  

Add	   Copy	   Triad	   Scale	  

En
er
gy
	  (J
)	  

Ex
ec
u.

on
	  .
m
e	  
(s
)	  

Func.on	  

perf_:cks	  

nrg_pkg	  

nrg_pp0	  

nrg_pp1	  

Figure 4. The results of performance and energy profiling of the STREAM tool.

for more complex applications.

5. Conclusions
Energy efficiency has become a major concern for HTC, given the large amount of computing
resources - and thus energy - that recent experiments require. LHC computing is a prime example
of the need for energy efficient facilities, given its present requirements and costs constraints. The
need for energy efficiency drives an interest in accurately evaluating the different components
of a HTC system to understand how and where energy is consumed and improve the overall
efficiency. However, HTC systems are complex and composed of different components. In this
paper we have presented a number of techniques and tools that provide insight into how and
where energy is consumed from different perspectives and granularities. In addition, IgProf, an
open source profiling tool, has been extended to run on 64-bit ARM and to provide function-level
energy profiling capabilities. Using these tools and techniques we have also reported studies done
to compare the energy performance of x86-64 and ARMv7 processors, confirming the potential
of ARMv7 for efficient HTC systems should server grade systems be built around such chips.

Acknowledgements
This work was partially supported by the National Science Foundation, under Cooperative
Agreement PHY-1120138, and by the U.S. Department of Energy. ARMv8 and energy profiling
support in IgProf was also supported by Google Summer of Code (GSoC 2014).

References
[1] Lyndon Evans and Philip Bryant. LHC Machine. JINST, 3:S08001, 2008.
[2] Bird I. Computing for the Large Hadron Collider. Annual Review of Nuclear and Particle Science, 61, 2011.
[3] S. Chatrchyan et al. The CMS experiment at the CERN LHC. JINST, 3:S08004, 2008.
[4] Aad G et al (Atlas Collaboration). The Atlas Experiment at the CERN Large Hadron Collider. JINST, 3,

S08003.
[5] S. Chatrchyan et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the

LHC. Phys.Lett., B716:30–61, 2012.
[6] G. Aad et al. Observation of a new particle in the search for the Standard Model Higgs boson with the

ATLAS detector at the LHC. Phys.Lett., B716:1–29, 2012.
[7] L Rossi and O Bruning. High Luminosity Large Hadron Collider A description for the European Strategy

Preparatory Group. Technical Report CERN-ATS-2012-236, CERN, Geneva, Aug 2012.
[8] Texas Instruments (TI) INA 231. http://www.ti.com/product/ina231. Last time accessed: 17-09-2014.

http://www.ti.com/product/ina231


[9] Intel 64 and IA-32 Software Developer Manuals - Volume 3. www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html.

[10] Balaji Subramaniam and Wu chun Feng. Towards energy-proportional computing for enterprise-class
server workloads. CPE ’13 Proceedings of the 4th ACM/SPEC International Conference on Performance
Engineering, 2012.

[11] David Abdurachmanov, Brian Bockelman, Peter Elmer, Giulio Eulisse, and Robert Knight. Heterogeneous
High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi. to be published in ACAT
2014 proceedings, 2014.

[12] David Abdurachmanov, Peter Elmer, Giulio Eulisse, and Shahzad Muzaffar. Initial explorations of arm
processors for scientific computing. Journal of Physics: Conference Series, 523(1):012009, 2014.

[13] David Abdurachmanov, Kapil Arya, Josh Bendavid, Tommaso Boccali, Gene Cooperman, Andrea Dotti,
Peter Elmer, Giulio Eulisse, Francesco Giacomini, Christopher D Jones, Matteo Manzali, and Shahzad
Muzaffar. Explorations of the viability of arm and xeon phi for physics processing. Journal of Physics:
Conference Series, 513(5):052008, 2014.

[14] S. Agostinelli et al. Geant4 a simulation toolkit. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, pages 250–303. DOI:
10.1016/S0168-9002(03)01368-8.

[15] Giulio Eulisse and Lassi Tuura. IgProf Profiling Tool. Proc. Computing In High Energy Physics (CHEP04)
(Interlaken), 2004.

[16] IgProf, the Ignominous Profiler. http://igprof.org/. Accessed 2014-09-30.
[17] Vincent M. Weaver, Matt Johnson, Kiran Kasichayanula, James Ralph, Piotr Luszczek, Dan Terpstra, and

Shirley Moore. Measuring energy and power with PAPI. Proceedings of the International Conference on
Parallel Processing Workshops, pages 262–268, 2012. DOI: 10.1109/ICPPW.2012.39.

[18] John D. McCalpin. STREAM: Sustainable memory bandwidth in high performance computers. Web page.
http://www.cs.virginia.edu/stream/. Accessed 2014-09-30.

http://igprof.org/
http://www.cs.virginia.edu/stream/

