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Abstract. Electrical power requirements will be a constraint on the future growth
of Distributed High Throughput Computing (DHTC) as used by High Energy Physics.
Performance-per-watt is a critical metric for the evaluation of computer architectures for cost-
efficient computing. Additionally, future performance growth will come from heterogeneous,
many-core, and high computing density platforms with specialized processors. In this paper,
we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied
Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific
computing applications. We report our experience on software porting, performance and energy
efficiency and evaluate the potential for use of such technologies in the context of distributed
computing systems such as the Worldwide LHC Computing Grid (WLCG).

1. Introduction and Motivation
Processing the data produced by High Energy Physics (HEP) experiments like those at the
Large Hadron Collider (LHC) [1] at the European Laboratory for Particle Physics (CERN)
requires significant computing resources. The scale is beyond those available in a typical single
computer center. The Worldwide LHC Computing Grid (WLCG) was established to provide the
computing resources needed for the LHC experiments, and used, for example, by the CMS and
ATLAS experiments for the discovery of the Higgs boson [2, 3]. It is a distributed computing
resource across 170 computing centers in 40 countries. The CMS experiment, for example, used
between 80,000 and 100,000 x86 64 cores from the WLCG for its processing needs in 2012.
Planned luminosity upgrades of the LHC [4] will result in a 2-3 order of magnitude increase in
dataset sizes over the next 15 years, requiring commensurate increases in processing capacity.

Intel is the leading company in general purpose server processors market. Alternative
solutions, like ARMv8 64-bit, aim to provide high-density and energy efficient platforms for
computing centers. These platforms delivered by multiple vendors are optimized for specific
market segments while ensuring compatibility by running a common instruction set, i.e. a
single ecosystem is shared. General purpose solutions provide benefits to a full software stack



unlike graphics processing units (GPU), which require software redesign and only applicable for
portions of the application.

In this paper we focus on two general purpose central processors: Applied Micro (APM)
X-Gene 1 ARMv8 64-bit Server-on-Chip and Intel’s Xeon Phi coprocessor. We investigate these
two platforms as alternatives to the x86 64 family of processors used in the WLCG today. We
base our results on performance (events per second) scalability over power (watts) usage. The
power measurements we provide in this paper are for the silicon chip and not for a full computing
node.

1.1. Market
According to Gartner, Intel sold 92 percent of all server processors in 2013 [5]. Distributed High
Throughput Computing (DHTC) is also dominated by x86 64. In contrast, ARM Holdings is a
leader in low power and high energy efficiency processors market. Their business model differs
from Intel as they provide license agreements for their intellectual property (IP) to partners.
Instruction set (ISA) licenses allow partners to create custom silicon chips for wide variety of
applications: mobile phones, notebook, servers and many others. In addition to providing ISA
licenses ARM Holdings offers already designed and verified building blocks (CPU and GPU cores,
on-chip interconnect and similar) for manufacturing of silicon chips solutions. Each solution is
designed to meet specific market requirements, while keeping the compatibility by running a
common ISA, like ARMv8 64-bit. ARM Holdings and partners introduced a new high energy
efficient general purpose server products in 2014.

Intel announced Xeon Phi platform, also known as Many Integrated Cores (MIC), for HPC
market in 2012. It is a many-core and long-vector machine combining benefits of CPU and GPU
into a single product. Xeon Phi is available in a PCIe add-on card form factor and requires a
host system with Intel Xeon processors. The paltform provides high computational power and
high energy-efficiency solution for HPC market. We have previously reported results for the
Xeon Phi [6] CMS Software (CMSSW) port (still incomplete due to issues with the Intel C++
Compiler).

We begin with a description of our efforts to port software and validate ARMv8 64-
bit, and then describe a power and computational performance comparison between multiple
architectures.

2. Software Port and Validation of ARMv8 64-bit
2.1. APM X-Gene
APM is the first company to introduce server grade and custom designed ARMv8 64-bit Server-
on-Chip solution, X-Gene 1 built on 40nm process by TSMC semiconductor foundry. A next
generation X-Gene 2 built on 28nm processes is already being sampled. Princeton and CERN
were provided with XC-1 development boards with a single X-Gene 1 APM883208 silicon chip
for software porting efforts. It is primarily intended for speeding up development efforts. The
specification of silicon chip is provided in table 1. We have been working with APM for more
than a year to deliver CMS Software (CMSSW) and Open Science Grid (OSG) [7] software stack
for ARMv8 64-bit.

2.2. Software Porting Issues
We have previously reported work to port the CMS Software (CMSSW) to ARMv7 32-bit
System-on-Chip silicon chips [8, 6]. It allowed us to understand many issues arising when
porting to non-x86 64 architectures and to prepare for ARMv8 64-bit platforms. Indeed issues
resolved for ARMv7 32-bit were often also relevant for ARMv8 64-bit, however some issues
specific to ARMv8 64-bit were encountered:



• Update of autoconf package was required for successful detection of ARMV8 64-bit
platform, aarch64.

• In cases where ARMv8 64-bit support was already present, software packages were updated
to the newer version.

• We added ARMv8 64-bit support to the ROOT [9] software package. The ROOT (version
5) was extended with the linuxarm64 target. One important feature, Reflex dictionary
generation, is not supported for ARMv8 64-bit. ROOT uses GCCXML as the underlying
implementation for data reflection, and GCCXML (based on GCC 4.2.1) is far too old for
ARMv8 64-bit support. However, because the data model – LP64 – is the same between
x86 64 and ARMv8 64-bit, we were able (as a workaround) to pre-generate dictionaries
on x86 64 and then compile them on ARMv8 64-bit. We found that such dictionaries
work successfully. More recent releases of ROOT (version 6) use LLVM/Clang in place of
GCCXML for dictionary generation, but this still does not support ARMv8 64-bit due to
the use of the old Just-in-Time (JIT) interface. This JIT interface will be removed from
LLVM/Clang after the version 3.5 release and ROOT is scheduled to migrated to MCJIT
interface in 2015 [10]. Until this migration happens rootcling will not work on ARMv8
64-bit systems.

• Oracle Instant Client is only provided as proprietary binary blobs and not as source code,
and is not available for the ARMv7 32-bit and ARMv8 64-bit architectures. However, none
of the standard CMS workflows run on the WLCG depend on Oracle. Only a few specialized
applications used at CERN alone need Oracle, for example, loading detector calibrations.

• Toolchain (GCC and binutils) issues were found and reported upstream to the projects.
The final GCC 4.9.1 and binutils (bfd linker) 2.24 is now capable of compiling CMSSW.
However, one issue remains open with CERN Virtual File System (CVMFS) package used
for CMSSW distribution across Grid sites. We had to modify the way CVMFS components
(libcvmfs only.a, libz.a, libsqlite3.a, libcurl.a and libcares.a) are merged into
the final libcvmfs.a library.

• IgProf memory and performance profiler was ported to ARMv8 64-bit and libunwind

library improved with fast backtracing capability for ARMv7 32-bit and ARMv8 64-bit [11].

Figure 1. Example reconstruction validation distributions

2.3. ARMv8 64-bit Validation
To confirm that CMSSW provides comparable results on ARMv8 64-bit and x86 64, an initial
validation was done using the reconstruction software workflow. The validation necessarily



compared not only the two different architectures (ARMv8 64-bit to x86 64), but also two
different Linux distributions (Fedora 19 to Scientific Linux CERN 6.5). Any discrepancies due to
the latter, such as different math libraries, should be resolved in future validations. In addition,
given that only a single board was available for ARMv8 64-bit, the validation was statistics
limited to see any very subtle effects. With these minor caveats the observed differences are
minimal (figure 1 shows two examples) and within physics validation limits.

2.4. Grid Software
A new architecture such as ARMv8 64-bit would likely be initially deployed as a batch worker
node. Thus we have also built the minimal set of required OSG software packages to support
that: voms-clients, HTCondor and CVMFS. CVMFS is used by CMS to distribute software and
small data packages around Grid sites. Thus no local installation of these packages is required.
CMSSW for ARMv8 64-bit is available alongside with CMSSW for x86 64 in CVMFS. We have
successfully used CMSSW release validation test suite on a local ARMv8 64-bit machine. It
runs a number of predefined CMSSW (cmsRun) workflows with small number of events (10 or
100). The input for workflows was generated locally as the first step or fetched from a remote
location. The CMSSW workflows successfully fetched their input data from a remote xrootd

server [12, 13], which demonstrates a functioning voms-clients package on ARMv8 64-bit.
We installed and configured HTCondor on XC-1 development board to be a 8 slots (1-core

and 2 GB memory) worker node at Princeton University. An additional x86 64 machine was
configured with HTCondor as a master node for our ARMv8 64-bit worker node. The master
node was able to communicate with the worker node and successfully execute the tasks.

3. Test Environments for Power and Performance Measurements
We now describe the test environments we have used to do power and performance measurements
for an Intel Xeon processor, an APM ARMv8 64-bit X-Gene 1 Server-on-Chip and an Intel Xeon
Phi coprocessor. As described above, we have demonstrated standard CMSSW applications
running on the APM ARMv8 64-bit XC-1 board, however no three-way comparison of the
platforms with CMSSW was possible due to the lack of a full CMSSW port on the Xeon Phi.
We have thus used the Geant4 [14] benchmark, ParFullCMS, as a simple cross-platform test
capable of running in multi-threaded mode. This benchmark uses a complex geometry (from
CMS), but it is a standalone application distributed with Geant4. Table 1 shows the selected
general purpose platforms used for the performance and energy efficiency benchmark.

Table 1. Silicon chips specifications

X-Gene 1 E5-2650 Xeon Phi SE10/7120

Physical cores 8 8 61
Threads per core 1 2 4
Total threads 8 16 244
Frequency 2.4 GHz 2.0 GHz 1.24 GHz
Memory 16 GB (DDR3) 256 GB (DDR3) 16 GB (GDDR5)

3.1. Intel Xeon
Our reference platform is a dual-socket Intel Xeon CPU E5-2650 @ 2.00 GHz launched in Q1
2012. It is an 8 physical core Sandy Bridge CPU with hyper-threading (HT) and Turbo Boost



(2.8 GHz) enabled. The particular system was equipped with 256 GB DDR3 memory. For
silicon-to-silicon comparison we only measured power consumption of a single socket. For the
test, the ParFullCMS benchmark was compiled with GCC 4.9.1.

Intel’s Running Average Power Limit (RAPL) [15, 11] technology was used for measuring
power usage of different parts of the silicon chip. It is available in modern Intel micro-
architectures starting from Sandy Bridge. It is intended for controlling and limiting power
usage in silicon chip. In addition, RAPL provides capabilities to measure energy and power
usage. We used this capability to acquire readings from the silicon chip. The following RAPL
domains are supported by server-grade silicon chips:

• PP0 (Power Plane 0) – processors cores subsystem.

• PKG (Package) – processor die.

• DRAM (Memory) – directly-attached DRAM.

The processors core subsystem consists of execution units, ALU, FPU, L1 and L2 caches.
The uncore subsystem (energy(PKG) - energy(PPO)) consists of Intel QuickPath Interconnect
(QPI), Last Level Cache (LLc), on-chip memory and I/O. RAPL provides ∼1 ms [15] resolution
measurements. For the test we only measured PKG power domain for a single socket. Reading
RAPL sensor data was done via model-specific registers (MSR) exposed to Linux user-land via
devfs.

3.2. Intel Xeon Phi
The Xeon Phi card is a highly parallel machine with 61 physical cores and 4-way multi-threading
running at 1.24 GHz. It includes GPU-class 16 GB GDDR5 memory, which provide ultra-high
bandwidth compared to standard DRAM solutions. The card we used had only passive cooling.
The card supports two execution modes: native and offloading. For simplicity our tests were
done using native execution on the card itself. The Intel C++ Compiler (Intel Composer XE
2013 SP1 Update 2, 14.0.2 20140120) was used to compile the test as GCC does not provide Xeon
Phi support.

The Xeon Phi card includes a number of sensors to acquire power usage from different domains
on the card. We used libmicmgmt from Manycore Platform Software Stack (MPSS) 3.2 to read
the sensor data for different domains (PCIe, 2x3, 2x4, VCCP, VDDG, VDDQ, instant power
and more). There is drawback of non-direct sensor reading. libmicmgmt sends an interrupt over
PCIe bus to uOS (Linux) forcing Xeon Phi to switch to higher power state. This method cannot
be used for measuring idle power consumption. We measured idle power consumption of the card
by physically removing it from the server enclosure. We found that idle power consumption was
17W. The resolution of sensors is 50 ms. Two distinct datasets were used for Xeon Phi: one for
the whole card and another for VCCP + VDDG power domains. According to Performance API
(PAPI) [16] source code, VCCP power rail is processors core subsystem and VDDG – uncore
subsystem.

3.3. APM X-Gene
APM X-Gene 1 is 8 physical core processor running at 2.4 GHz. The particular system, XC-1
development board, contains 16 GB DDR3 memory. The board provides 2 memory channels, but
APM883408 is capable of addressing 512 GB of memory using 4 memory channels. Investigation
done by APM showed that ParFullCMS test does not require high memory bandwidth. We would
like to emphasize that the firmware for managing processor ACPI power states was not available
in time for the test. We expect X-Gene 1 efficiency to increase once the firmware is available.
XC-1 is running a custom build of Fedora 19 provided by Red Hat. The test was compiled with
GCC 4.9.1. APM is working on X-Gene 1 optimizations for GCC, but changes were not integrated
upstream in time for the benchmark.



The XC-1 development board includes sensors for reading the power usage of different
domains of the silicon chip. We estimated power usage for the silicon chip by combining readings
for PMD (core subsystem) and SOC (uncore subsystem) power domains. The XC-1 is an IPMI-
enabled device, thus readings from the sensors can be acquired by ipmitool tool. We used IPMI
before in previous research, but we found that executing ipmitool is expensive and restricts the
measurements resolution. For XC-1 we read sensor data via I2C bus and avoided unnecessary
overheads caused by execution of ipmitool tool.

4. Results of Power and Performance Measurements
4.1. Platform Efficiency
Our energy efficiency benchmark provided three-way silicon level comparison between APM
X-Gene 1 – the first on the market ARMv8 64-bit Server-on-Chip solution, Intel Xeon – the
dominating processor family in server market and Intel Xeon Phi – a highly parallel long-vector
processor family product intended for HPC workloads. We sampled power usage readings from
sensors with one second resolution on all platforms.

First we compared absolute performance provided by different solutions by running on
all available hardware threads (figure 2). We found that Intel Xeon Phi provided the best
performance, 1.07 times higher performance to Intel Xeon. In the absence of the anticipated
compiler optimizations, APM X-Gene 1 provided 2.48 times lower performance than Intel Xeon,
but it was also operating at significantly lower power usage.

Then we measured how performance scales over power (figure 3, figure 4). We found
that APM X-Gene 1 running at full capacity (8 threads) was drawing less power than Intel
Xeon running a single thread and delivered 2.73 times higher performance. Intel Xeon was
Turbo Boost enabled with up to 2.8 GHz for a single core. The benchmark is CPU bound
and as expected Hyper-Threading (HT) on Intel Xeon did not deliver higher energy efficiency.
Additional few percent of performance were gained at similar cost in power consumption (figure
3). We also overcommitted APM X-Gene 1 with 2 threads per physical core, but we did not
observe significant change in energy efficiency. Intel Xeon Phi as expected required at least 2
threads to achieve high utilization of card.

5. Conclusions
We have built the software used by the CMS experiment at CERN, as well as portions of
the OSG software stack, for ARMv8 64-bit. It has been made available in the official CMS
software package repository and via the CVMFS distributed file system used by Grid sites.
Our initial validation has demonstrated that APM X-Gene 1 Server-on-Chip ARMv8 64-
bit solution is a relevant and potentially interesting platform for heterogeneous high-density
computing. In the absence of platform specific optimizations in the ARMv8 64-bit GCC compiler
used, APM X-Gene 1 shows excellent promise that the APM X-Gene hardware will be a valid
competitor to Intel Xeon in term of power efficiency as the software evolves. However, Intel
Xeon Phi is a completely different category of product.

As APM X-Gene 2 is being sampled right now, built on the TMSC 28 nm process, we look
forward to extending our work to include it into our comparison.
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Figure 2. Absolute silicon chip performance

Figure 3. Energy efficiency scalability



Figure 4. Performance scalability over power usage
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