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Abstract. We present the Monte Carlo event generator LePaProGen for lepton pair production
at hadron colliders. LePaProGen focuses on the description of higher-order electroweak radiative
corrections. The generator is implementing a new algorithm for the selection of the optimal
variables for phase space parametrization.

1. Introduction
The processes of single electroweak boson production are very significant for physical studies
at LHC. There are many groups working on them to provide adequate theoretical predictions.
FEWZ [1], POWHEG [2–4], SANC [5], HORACE [6] et al. programs has been developed for this purpose.
At energies 1-5 TeV charged and neutral current Drell-Yan processes are background to the
processes of new physics. To make distinguish between different models it is important to have
both fast and accurate tool for Monte-Carlo simulation. Designed for this purpose code READY [7]
based on Sudakov and collinear logarithms approximation working only at extra large dilepton
invariant mass. It is convenient to have a tool which works equally good at all kinematic regions
and nevertheless is very fast. For this reason we introduce our event generator LePaProGen.

2. LePaProGen
LePaProGen (Lepton Pair Production Generator) is a Monte-Carlo generator for the neutral and
charged current Drell-Yan process. It is intended for fast and accurate generation of events and
uses independent generation algorithm. Now it implements one loop radiative corrections with
the exact hard QED Bremsstrahlung contribution. But the higher order QCD or electroweak
corrections could be easily added by design. LePaProGen is written in C++ using modular
architecture. To overcome the C++ templates limitations we use a Python module which
calculates all the constants and preprocesses the input settings. A glue layer between Python and
C++ parts of the program is Mako template library which performs optimized code generation
for the process chosen by user. LePaProGen can be used as a Pythia8 plug-in. It has all needed
interfaces for convenient work: it generates events in the Les Houches Accord (LHA) format,
the HepMC output format; it uses the LHAPDF interface for parton density functions. It supports
a variety of renormalization schemes and performs the POWHEG-like matching.

In the following sections we will describe the main algorithms implemented in LePaProGen
in detail.



3. Generation of phase space points
First of all we start with phase space points generation. All the variables can be divided into
two groups: the “slow” and the “fast”. The “slow” variables can be generated uniformly but
the “fast” ones require importance sampling. In tree level amplitude all “fast” variables are due
to propagators. In order to generate a point in phase space we need to parametrize it by the
invariant variables, which appear in the propagators. It can be done by effectively replacing all
the propagators by δ-functions∫
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Such integrals appear in generalized unitarity methods and can be expressed by Feynman graphs
(Fig. 1) with the help of the optical theorem. In fact all intermediate and final particles in such

Figure 1. The Feynman
graph for integral.

Figure 2. The contraction
of the first loop.

Figure 3. The result of the
final contraction.

graph are on-shell. To calculate the integral we subsequently contract one loop subdiagrams
starting with ones containing lesser number of propagators (Fig. 2-3). As a result we obtain a
Jacobian determinant of transformation. This algorithm is a generalization of the recurrence
relation for phase space volume from Byckling and Kajantie [8].

4. Particles Momenta Reconstruction
The cross-section for the process a+ b→ 1 + . . .+ n is the following phase space integral:
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For now lets formulate the problem of phase space reconstruction.

• We select some set of invariant valiables sutable for generation.

• Then we sample these variables according to some importance density.

• We must evaluate the matrix element at the selected point of phase space. If the matrix
element is in the invariant form then we need only the full set of scalar products pi · pj .
• If the matrix element is expressed in terms of noninvariant components of vectors in some

reference frame, then we must express them in our invariant set of variables. This task we
call “reconstruction”.

Consider reconstruction in the case of 3-propagators phase space integral.
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Figure 4. Momentum flow diagram.

4.1. Three-Point Reconstruction
This case corresponds to the interference between the decay and the t-channel scattering, or
to the subdiagram of interference between two 3-particle decay channels. Our reconstruction
algorithm is universal and works for both interpretations. Differences appear only in the
integration limits.

As input parameters we have two 4-momenta. These are the momenta of the particles
scattered in t-channel p1 and p13 (Fig. 4). Let the momenta after scattering be p2 and p12.
The masses of the decay products and the intermediate t-channel propagators are known (m1,
m12 and m123). We use only the invariant squared masses s1 = p2

1, s12 = p2
12 and s123 = p2

123

because a contracted one-loop subdiagram can appear at the place of a particle. It is evident,
that due to the 4-momentum conservation it is enough to reconstruct only the 4-momentum of
one of the particles.

The first necessary condition for the decay is time-likeness of the 2-plane spanned by external
momenta:

π13 = p1 ∧ p3 = p1 ∧ p13, ‖π13‖2 > 0. (3)

This condition guarantees finiteness of the phase space volume and is weaker then the
corresponding one from [8]. Consequently our approach is more general and can be applicable
in cases when relations from [8] does not work.

The scalar products are fixed by the masses of decay products:

p1 · p2 =
s12 − s1 − s2

2
, p2 · p13 =

s123 − s2 − s13

2
. (4)

The next step is to construct reciprocal basis:

p1 = p13π
−1
13 , p13 = −p1π

−1
13 . (5)

Using this basis we can reconstruct the longitudinal component of p2 and norm of the transverse
component:

p2L = (p1 · p2)p1 + (p2 · p13)p13, p2
2T = s2 − p2

2L. (6)

Here is the place to apply the second necessary condition on the input parameters: it is evident
that the longitudinal part is time-like (p2

2L > 0) so the transverse part should be space-like:

p2
2T < 0. (7)



The direction of the transverse part of p2 cannot be determined from provided data and should
be generated randomly and uniformly. Lets generate a unit 2-vector n uniformly on circle.

In order to use this as the direction of p2T we should Lorentz-transform it to the plane
orthogonal to the all external momenta. We are going to construct a Lorentz transformation
which maps π13/‖π13‖ to the bivector γ0 ∧ γ3. In Clifford algebra this transformation is
determined by the rotor R:
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√
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(
〈π13γ03〉

)
π13γ03, γ03 = γ0γ3 = γ0 ∧ γ3. (8)
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The above mentioned procedure is correct because Lorentz-transformations preserve
orthogonality. Moreover, this 4-rotation has minimum norm in parametric space.

The Jacobian determinant we need is

J3 =
π

2(2π)6
√
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. (11)

5. The Amplitude
In this section we turn our focus on the hard Bremsstrahlung amplitudes. They are generated
using helicity amplitude technique by our MetaAmp package. We use the Kleiss-Stirling
convention [9]. Lets choose two basis vectors k0 and k1, which satisfy relations:

k2
0 = 0, k0 · k1 = 0, k2

1 = −1. (12)

So then we construct basis spinors u+(k0) and u−(k0), such that

uλ(k0)ūλ(k0) =ωλk̂0, uλ(k0) =λk̂1u−λ(k0), ωλ =
1 + λγ5

2
. (13)

If we take k0 = {1/2, 0, 0, 1/2} and k1 = {0, 1, 0, 0} than in the Weyl representation (up to an
arbitrary phase) the basis spinors look like u+(k0) = {1, 0, 0, 0}T and u−(k0) = {0, 0, 0,−1}T .

Now we can express a spinor for arbitrary external particle with momentum p:

uλ(p) =
p̂±m√
2p · k0

u−λ(k0). (14)

To generate amplitudes MetaAmp uses Fiertz identities and Dirac matrix algebra. In that way
we reduce the task to calculation of the following expressions:

〈pq . . . k〉 = ū+(k0)p̂q̂ . . . k̂ω+u+(k0) = Tr[p̂q̂ . . . k̂ω+k̂0],

〈pq . . . k] = ū+(k0)p̂q̂ . . . k̂ω−u−(k0) = Tr[p̂q̂ . . . k̂ω−k̂0k̂1],

[pq . . . k〉 = ū−(k0)p̂q̂ . . . k̂ω+u+(k0) = Tr[p̂q̂ . . . k̂ω+k̂1k̂0],

[pq . . . k] = ū−(k0)p̂q̂ . . . k̂ω−u−(k0) = Tr[p̂q̂ . . . k̂ω−k̂0]. (15)



Normalization factors from external wave-functions are factorized out from the whole amplitude
so square roots are not presented. We have chosen k0 = {1/2, 0, 0, 1/2} and k1 = {0, 1, 0, 0}, so
operations (15) are reduced to taking the component of the resulting matrix making numerical
calculation of generated amplitudes really fast.

This is an example of the single bremsstrahlung amplitudes generated by MetaAmp:
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where DLR(s) = Q(q)Q(µ) + gL(q)gR(l) s
s−M2

Z+iΓZMZ
; Q(q)(Q(µ)) – charge of quark (muon);

gL(q), gR(l) – weak current coupling constants; i1,i2 – color indices.

6. Plots
In order to demonstrate work of our generator we present some plots Fig. 5-7 for the neutral-
current Drell-Yan process generated using LePaProGen.

Figure 5. The transverse
momentum distribution of the
muon. Born – green, Born + EW
–guaranty finteness red.

Figure 6. The pseudorapidity
distribution of the muon. Born –
green, Born + EW – red.

Figure 7. The muon pair in-
variant mass distribution. Born
– green, Born + EW – red.

7. Conclusions
In this paper a new generator LePaProGen for Drell-Yan processes is presented. A new algorithm
for the selection of the optimal variables for phase space parametrization is implemented. The
resulting efficiency is under investigation. A comparison with existing Monte-Carlo algorithms,
like Vegas and FOAM[10], will be performed. A fast modification of helicity amplitude method
is used. The detailed numerical comparison between the predictions of LePaProGen and other
MC event generators for charged and neutral current Drell-Yan processes will be fulfilled in the
near future.
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