
VISPA: Direct Access and Execution of Data

Analyses for Collaborations

Daniel von Asseldonk, Martin Erdmann, Robert Fischer, Christian
Glaser, Gero Müller, Thorben Quast, Marcel Rieger, Martin Urban

III. Physics Institute A, RWTH Aachen University, Aachen, Germany

E-mail: glaser@physik.rwth-aachen.de

Abstract. The VISPA project provides a graphical frontend to computing infrastructures.
Currently, the focus of the project is to give an online environment for the development of
data analyses. Access is provided through a web GUI, which has all functionality needed for
working conditions comparable to a personal computer. This includes a new preference system
as well as user configurable shortkeys. As all relevant software, data and computing resources
are supplied on a common remote infrastructure the VISPA web framework offers a new way
of collaborative work where analyses of colleagues can be reviewed and executed with just one
click. Furthermore, VISPA can be extended to the specific needs of an experiment or other
scientific use cases. This is presented in the form of a new GUI to the analysis framework
Offline of the Pierre Auger collaboration.

1. Introduction
We are facing the situation that on the one hand our mobile computing devices become smaller
and more portable whereas - on the other hand - more computing resources are needed and
larger and larger data volumes need to be handled. Furthermore, it is getting more difficult to
install software needed for data analyses on an ultrabook or tablet, even disregarding computing
power and storage.

One solution is to use a software that all devices have in common: The web browser. Instead
of installing software and transferring data onto a device, one opens a browser, connects to a
web server and accesses a working environment by means of a web application.

The VISPA software provides this functionality. VISPA is a graphical front-end to
infrastructures which makes software, data and computing resources available through the web.

The article is structured as follows: We first describe the software and its technical
implementation in detail. After describing how VISPA can be extended by custom applications,
current and future use cases are discussed.

2. The software
The VISPA software [1, 2] consists of two parts: The first part is the basic functionality
which provides a GUI framework, user management and the communication between client
(web browser), server and worker nodes. The second part are applications that use the VISPA
framework. Several applications are shipped directly with the main VISPA package. These
applications are a file browser, a terminal emulator and a code editor. However, the concept of

Figure 1. Screenshot of the code editor application.

VISPA is to provide a web framework that can then be extended with custom made applications
by other groups themselves. This is demonstrated in section 4 by means of a graphical steering
of the analysis framework of the Pierre Auger collaboration.

In the current version 1.0 of the VISPA platform, the GUI has been redesigned to optimize the
workflow providing working conditions comparable to a local desktop environment. A preference
system is used to satisfy users’ individual tastes of the GUI appearance and working style.
Frequently used operations are accessible with just one mouse click, or by using a shortkey
respectively. Shortcuts are user configurable on the whole platform.

Figures 1, 2a and 2b show screenshots of the three basic VISPA applications. The main
GUI elements are visible in the upper menu bar. A VISPA application is opened as a tab
and multiple applications can be opened at the same time. The code editor application was
extended to instantly execute python scripts. With a click on the green execute button the
script is executed. The terminal output of the python job is visible in the upper right part of
the application window. Output plots that are generated by the job are visible in the lower right
part. A click on a plot will open a larger preview.

The VISPA platform consists of three tiers: Clients, the VISPA server and worker nodes
(figure 3a). This separation enables increased scalability [3]. On the client side the web browser
provides the graphical user interface. The VISPA server is a web server providing the content
to the client, which it gathers from the backend servers. Worker nodes can be any computer

(a) (b)

Figure 2. Screenshot of the file browser (a) and the terminal (b) application.

ranging from a laptop to a computing cluster. The only requirements for the workers are SSH
access and a Python [4] interpreter. Additional software may be required for custom VISPA
applications.

The GUI (client code) is based on the HTML5 markup language, CSS3 and the JavaScript
scripting language, which are supported by common web browsers [5]. Advanced functionality
is implemented using the JavsSript library jQuery [6] and the Bootstrap3 framework [7].
Furthermore, most web content is generated by rendering HTML templates on server or client
side using mako [8] or transparency [9].

Server and workspace code is written in Python [4]. The server is build on the web framework
CherryPy [10]. This allows for a convenient integration of various scientific software packages
written in Python, such as PXL [2], ROOT [11] and SciPy [12]. Persistent data, e.g. user
management and preferences, are stored in databases using SQLAlachemy [13].

Server - workspace communication The communication between server and worker node
(workspace) is established using a bootstrap approach: At the beginning of the communication,
all relevant software is copied via ssh into the memory of the worker node. This makes a SSH
access and a Python [4] interpreter the only requirement.

The first step is to create a ssh connection and execute a minimal Python code which makes
the stdin and stdout pipe to exchange commands. Then all required Python packages are
compressed into one zip archive on the server and copied and extracted into the workers memory.
All further communication uses remote procedure calls. In our implementation we make use of
the Python packages RPyC [14] and paramiko [15].

3. Extending VISPA with custom applications
VISPA is designed to be extended to custom needs of a user or a group. The VISPA framework
provides all necessary functionality to utilize the client - server - worker system. Hence, the user
needs to implement only the specific tasks of his application.

The VISPA source code [16] contains two well documented example applications, the so-called
”dummy” and ”demo” application. They demonstrate the implementation of a VISPA app and
show most features of the VISPA framework: Utility functions are provided which simplify the
server - client communication using Ajax, as well as the server - workspace communication.
Furthermore, intercommunication between different apps is supported. For instance a file

Clients VISPA Server Worker Nodes

(a) (b)

Figure 3. (a) Server setup. (b) Usage of VISPA in an experimental physics lecture. Picture:
Peter Winandy (Aachen).

selection dialog can be opened as known from desktop applications.

4. Graphical steering of Pierre Auger analysis framework
An application which demonstrates the extensibility of the VISPA platform is the Auger Offline
application which provides a graphical steering of the analysis framework Offline [17, 18] of the
Pierre Auger collaboration. The reconstruction and analysis of raw data is steered by defining a
sequence of modules and by optionally overriding the default module options. This is normally
achieved by creating XML steering files which require knowledge of all necessary modules and
module options including their correct spelling.

To simplify the usage of Offline, the VISPA framework was used to implement a GUI which
can be seen in figure 4. In the left panel all available modules are displayed grouped by categories.
In the middle panel, the module sequence can be defined. Via drag and drop modules can be
moved from the left to the middle panel or sorted within the module sequence.

A click on one module opens the right panel where the module’s options can be edited. To
further assist the user, a tool-tip explaining the meaning of the option is displayed when hovering
over an option. Furthermore, the user can take advantage of VISPA’s job-management apps.
With a few clicks one or multiple jobs can be created and submitted to different batch systems.

This VISPA application was written without modification of the Auger analysis framework
Offline. All information is obtained dynamically by parsing XML configuration files that come
with the Offline software. Hence, the VISPA app does not interfere with the development of
Offline and will always be up to date to the installed version of the workspace.

The main advantages of using VISPA instead of a desktop GUI framework are: The
application is usable from any device and one does not need to run the application on the
computer where Offline is installed. The GUI is always up to date to the installed version on
the computer or computing cluster that is accessed through VISPA and one can work directly
on the remote files or submit a job. The device which steers Offline is decoupled from the device
providing the computing resources.

5. Collaborative analyses
VISPA opens a new way of collaborative work. As the analysis as well as all relevant software and
data are supplied on a common remote infrastructure, an analysis can be shared with colleagues
by giving them access to the relevant files. The analysis can be reviewed or executed through

Figure 4. Screenshots of the VISPA application to steer the analysis framework Offline of the
Pierre Auger collaboration.

the VISPA GUI giving a significant improve in comfort compared to remote ssh access. It is
planned to add GUI interfaces to create working groups and to share analyses with other VISPA
users as well as a GUI interface to common repository systems to facilitate shared work.

6. Application in education and outreach
Having a web browser as the only requirement for the user, VISPA is ideal to be used in education
and outreach activities.

VISPA has successfully been used to supplement a 2nd and 3rd years experimental physics
course at RWTH Aachen University in a blended learning initiative [19, 20]: Students analyzed
lecture hall experiments themselves directly during the lecture (see figure 3b). After the
experiment has been performed the data are uploaded on the VISPA server. A python analysis
script is provided which should be extended by the students. Thereby the amount of what
the students need to implement by themselves is adapted to the skills of the course. By using
their own laptops, the students can log in to the VISPA server and analyze the measured data.
An often task e.g. is to fit an analytic function to the data points and thereby determining
fundamental physical constants such as the g-factor of an electron. More advanced analysis
tasks are given as homework which are discussed in a weekly tutorial.

Furthermore, VISPA is used for CERN outreach activities for its 60th anniversary to perform
a data analysis on public CMS data [21]. For example, the mass of the Z-boson can be
reconstructed.

7. Conclusions
The VISPA web framework enables data analyses in a web browser. It provides a platform to
develop, execute and share physics analyses. With the basic applications that are shipped
with the VISPA package, all tools needed to develop data analyses are provided. As all
relevant software, data and computing resources can be provided on a remote infrastructure
that can be accessed through the VISPA GUI, analyses can be shared with colleagues keeping
the comfortable graphical interface.

Furthermore, VISPA is designed to be extended with custom applications to satisfy the needs
of specific user groups and unforeseen use cases. All necessary general functionality to write a
web application is provided so that the user can focus on the specific task of his application.

Achnowledgments
We wish to thank the organizers of the ACAT2014 conference for their kind support.
This work is supported by the Ministerium für Wissenschaft und Forschung, Nordrhein-
Westfalen, the Bundesministerium für Bildung und Forschung (BMBF) and the Deutsche
Forschungsgemeinschaft (DFG).

References
[1] VISPA web page http://vispa.physik.rwth-aachen.de

[2] Bretz H-P et al 2012 J. Instrum. 7 T08005 doi: 10.1088/1748-0221/7/08/T08005
[3] Erdmann M et al 2014 J. Phys. Conf. Ser. 513 62034 doi:10.1088/1742-6596/513/6/062034
[4] van Rossum G Python language http://www.python.org/.
[5] Erdmann M et al 2014 J. Phys. Conf. Ser. 523 012021 doi: 10.1088/1742-6596/523/1/012021
[6] jQuery http://jquery.com/

[7] Bootstrap http://getbootstrap.com/

[8] Mako http://www.makotemplates.org/

[9] Transparency http://leonidas.github.io/transparency/

[10] A Minimalist Python Web Framework http://www.cherrypy.org

[11] Antcheva I et al 2009 Comput. Phys. Commun. 180 2499 doi: 10.1016/j.cpc.2009.08.005
[12] SciPy http://www.scipy.org

[13] SQL alchemy http://www.sqlalchemy.org/

[14] RPyC http://rpyc.readthedocs.org/

[15] Paramiko http://www.paramiko.org/

[16] VISPA source code https://forge.physik.rwth-aachen.de/projects/vispa-web

[17] Argirò S et al 2007 Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip.
580 1485 doi: 10.1016/j.nima.2007.07.010

[18] Abreu P et al 2011 Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip.
635 92 doi: 10.1016/j.nima.2011.01.049

[19] Bender H, Sauter A and Sauter W 2002 Blended Learning: Effiziente Integration von E-Learning und
Präsenztraining Neuwied: Luchterhand.

[20] Erdmann M et al 2014 Eur.J.Phys. 35 35018 doi: 10.1088/0143-0807/35/3/035018
[21] CERN outreach http://opendata.cern.ch/

http://vispa.physik.rwth-aachen.de
http://dx.doi.org/10.1088/1748-0221/7/08/T08005
http://dx.doi.org/10.1088/1742-6596/513/6/062034
http://www.python.org/
http://dx.doi.org/10.1088/1742-6596/523/1/012021
http://jquery.com/
http://getbootstrap.com/
http://www.makotemplates.org/
http://leonidas.github.io/transparency/
http://www.cherrypy.org
http://dx.doi.org/10.1016/j.cpc.2009.08.005
http://www.scipy.org
http://www.sqlalchemy.org/
http://rpyc.readthedocs.org/
http://www.paramiko.org/
https://forge.physik.rwth-aachen.de/projects/vispa-web
http://dx.doi.org/10.1016/j.nima.2007.07.010
http://dx.doi.org/10.1016/j.nima.2011.01.049
http://dx.doi.org/10.1088/0143-0807/35/3/035018
http://opendata.cern.ch/

