
Distributed job scheduling in MetaCentrum

Šimon Tóth1 and Miroslav Ruda2

CESNET a.l.e., Zikova 4, Prague 6, 160 00, Czech Republic

E-mail: 1 simon@cesnet.cz

E-mail: 2 miroslav.ruda@cesnet.cz

Abstract.
MetaCentrum – The Czech National Grid provides access to various resources across the

Czech Republic. The utilized resource management and scheduling system is based on a heavily
modified version of the Torque Batch System. This open source resource manager is maintained
in a local fork and was extended to facilitate the requirements of such a large installation.
This paper provides an overview of unique features deployed in MetaCentrum. Notably, we
describe our distributed setup that encompasses several standalone independent servers while
still maintaining full cooperative scheduling across the grid. We also present the benefits of our
virtualized infrastructure that enables our schedulers to dynamically request ondemand virtual
machines, that are then used to facilitate the varied requirements of users in our system, as well
as enabling support for user requested virtual clusters that can be further interconnected using
a private VLAN.

1. Introduction
The Czech National Grid – MetaCentrum is a highly geographically distributed grid providing
both computational and storage resources.

Praha

Liberec

Pardubice

Brno

Olomouc

Ostrava

NIXAMS-IX

SANET
ACONET

PIONIER

Jihlava

Děčín

Plzeň Karviná

Zlín

České Budějovice

Hradec Králové

 

CESNET
Charles 

University 

University of 
West Bohemia

MU Loschmidt 
Laboratories

University of
South Bohemia

CEITEC 
Masaryk University

CERIT-SC

Institute of 
Physics ASCR

GÉANT

Inst. of Experiment. 
Botany ASCR 

CERIT-SC 

CESNET 

Masaryk University
Faculty of Informatics

CESNET 

CESNET 

CESNET 

Institute of 
Org. Chem. and 
Biochem. ASCR



The grid contains a heterogeneous set of resources, currently encompassing approximately
10000 CPU cores distributed across 550 nodes, with varied memory capacity (12GB..6TB) and
other capabilities (GPU cards, infiniband, high-speed NFS access, SSD scratch,...). Storage
resources mainly consist of 1 PB permanent storage and 27 PB of long term (tape) storage.
Heterogeneity of the resources is mirrored in the user base and workloads. The system commonly
facilitates large job submissions (up to 10000 jobs), or very long jobs (several months of expected
runtime).

This paper provides an overview of major features deployed in the Czech National Grid to
deal with the varied provided resources.

2. Resource management
Original Torque [1] did not contain significant resource management features apart from
managing CPU cores. We have extended Torque feature set significantly with additional
resources, such as memory, GPU cards, scratch disk space and software licenses. These resources
can all be requested by users in a very detailed manner. Users even have the option to request
heterogeneous jobs with multiple machines, each with different resource allocation. For example
a user can easily make a request for a job running on one master node with 1 CPU core and 48GB
of memory, 10 slave nodes, each with 16 CPU cores and 32 GB memory, all nodes connected
using infiniband. Additional features include negative requests, selecting machines based on
their performance, exclusive full node allocation, etc.

All resource requests are processed by the scheduler and jobs are only executed on nodes
strictly matching the jobs requirements, with all requested resources exclusively allocated to
this job. Users can therefore rely on these resource being available throughout the entire jobs
execution. For certain resources, in particular software licenses, we cannot provide a strict
guarantee, as these resources can be exhausted without the intervention of the scheduler (from
outside of the grid). For this style of resource we employ a heuristic to determine when a
particular job requesting such resource can be safely executed.

To guarantee fair access to the provided resource, we are employing a complex fairsharing
scheme [8] that takes into account utilization of CPU cores and memory [6]. The fairshare
scheme is based on a dynamic ordering policy that orders jobs (across queues) based on their
users historical resource consumption (with more recent consumption having a higher weight).

3. Distributed scheduling
MetaCentrum has experienced significant growth in the past five years (from 1500 CPU cores
in 2009 to over 10000 CPU cores in 2014). Naturally this growth demanded changes in the
scheduling infrastructure as the original centralized solution reached its scalability limits.

To address the scalability issue we went through multiple iterations of a distributed
architecture [12, 13, 10], with the final version [11] targeting not only scalability, but also
providing better resilience against local outages and giving resource providers better control
over the local policies they want to enforce over their hardware.

The model is based on the notion of global queues, which can span across multiple servers (see
Fig. 1) and are used to distribute information about jobs across these servers. Each scheduler
is responsible only for the resources of its local server and follows all locally imposed policies.
When a global queue is encountered it is treated the same way as any other queue, with the
scheduler also pulling in information about jobs in the remote (on other servers) parts of the
global queue. Remote and local jobs are all treated in the same manner.

Cross-server execution is handled in the background (between the servers), with the scheduler
only issuing a standard run requests. For the convenience of the users, cross-running jobs have
their execution information synchronized between the execution and the originating server.



local queue 2local queue 1 local queue 3

global queue 1

global queue 2

global queue 3

Server 1 Server 2 Server 3

Figure 1. Distributed configuration utilizing global queues spanning across different servers.

This model puts very little constraints on the sites connected to the distributed system as
they only need to run a compatible version of the Torque Batch System and can even use a
different scheduler than the rest of the system as long as this scheduler is patched with the
global queue support.

4. Virtualized infrastructure
Based on the Xen virtualization platform [2] and utilizing our Magrathea abstraction layer [4],
the virtualized infrastructure was originally designed to provide full machine preemption. In the
simplest case a physical machine is configured to host two virtual machines that both encompass
the complete resource pool provided by the machine and are capable of switching resources
between themselves (see Fig. 2). One of these machines is dedicated to low-priority preemptible
jobs, one is dedicated to high-priority jobs and can preempt (take over the resources) from the
low-priority virtual machine. This allows high-priority jobs immediate access to resources while
heavily simplifying the scheduling process.

Physical Node

Virtual node 1 Virtual Node 2

Physical Node

Virtual node 1 Virtual Node 2

Job

Physical Node

Virtual node 1 Virtual Node 2

JobJob

Job

Figure 2. Example of a full machine preemption. Low-priority job claims all resources of the
physical machine, but is then preempted by a high-priority job.

An extension of this basic model is the ability to start ondemand virtual clusters on top of our
infrastructure. In this case, one of the virtual machines is left in an offline-bootable state and
the scheduler is left with the option to start a new virtual machine with the desired (depending
on the current overall users’ demands) virtual image (see Fig. 3). This allows us to provide a
more varied range of software configurations on the grid, without the need to statically dedicate
a portion of the machine pool to a particular configuration.



Debian

Physical Node

Virtual node 1 Virtual Node 2

Job

Physical Node

Virtual node 1 Virtual Node 2

Scientific
Linux

Physical Node

Virtual node 1 Virtual Node 2

Job

Figure 3. Example of an ondemand cluster. Once an instance with Debian is freed up, the
scheduler boots up another instance with Scientific Linux.

Virtual clusters can also be requested directly by the users (including the possibility to connect
the machines in the cluster using a VLAN). In this case the user can either request a virtual
cluster that connects back to the resource management system, effectively creating a resource
reservation, and specifying what users can access this prebuilt virtual cluster. For more complex
use cases we are capable of providing a prebuilt image that connects to a preconfigured VLAN,
extending the users computational infrastructure with more resources. This use case can cover
even users that require access to Windows instances.

5. Management features
Extensive set of features, particularly important for the grid operator, was also implemented into
Torque. This includes architectural features such as Kerberos [3] authentication with Kerberos
based ACL for both job submission and system management and user oriented features such as
the detection of invalid jobs that will never be executed under the current system configuration
(these can be both the result of user error, or a maintenance event).

To maintain control over the systems behaviour, we have significantly extended the per-queue,
per-group and per-user limits. Queues can be now limited to a particular subset of resources,
can be limited in how many CPU cores they are allowed to occupy at any time, which extends
to per-group and per-user limits.

To allow easy maintenance of machines, we are providing a dedicated maintenance queue,
which disallows any other queues from accessing machines assigned to this queue. Furthermore,
future maintenance can be specified for each node in the form of a deadline. No jobs that with
runtime exceeding this specified deadline will be allowed to run on this particular node.

For testing and monitoring purposes it is sometimes required to submit small jobs to machines
that are already fully utilized. Since we are heavily relying on exclusive resource allocation model,
this would not be generally possible. To maintain this convenience, we have extended Torque
with the support for admin slots. These represent an additional virtual CPU core that can be
used to process small jobs (access to admin slots is limited to grid management and monitoring).

6. Conclusion
In this paper, we have presented an overview of important features that were implemented
into our local fork of the Torque Batch System to facilitate the requirements of the Czech
National Grid. Our resource management extensions allow users great control over what
particular resources will be assigned to their jobs. Support for distributed scheduling allows us
to divide the system into more manageable sites while still maintain global scheduling support
and quality. Virtualized infrastructure gives our system the flexibility to deal with more exotic
user requirements, be it infrequently utilized system configurations (through ondemand clusters)



or dedicated virtual clusters. Our fork of the Torque Batch System is fully opensource and freely
available at https://cesnet.github.io/torque/.

Acknowledgements. The work presented in this paper was conducted under the programme
”Projects of Large Infrastructure for Research, Development, and Innovations” (LM2010005)
funded by the Ministry of Education, Youth and Sports of the Czech Republic.

References
[1] Adaptive Computing Inc. 2014 Torque batch system http://www.adaptivecomputing.com/products/

open-source/torque/

[2] Barham P, Dragovic B and Fraser K, Hand S, Harris T, Ho A, Neugebar R, Pratt I and Warfield A 2003 Xen
and the art of virtualization SOSP

[3] Neuman C, Yu T, Hartman S and Raeburn K 2005 The kerberos network authentication service RFC
[4] Ruda M, Šustr Z, Sitera J, Antoš D, Hejtmánek L and Holub P 2010 Virtual Clusters as a new service for

MetaCentrum, the Czech NGI CGW’09 pp 64–71
[5] Klusáček D, Rudová H and Jaroš M 2014 Multi resource fairness: problems and challenges JSSPP’13 To

appear.
[6] Klusáček D and Rudová H 2014 Multi-resource aware fairsharing for heterogenous systems JSSPP’14 To

appear.
[7] Tóth Š and Klusáček D 2014 User-aware metrics for measuring quality of parallel job schedules JSSPP’14 To

appear
[8] Klusáček D and Tóth Š 2014 On interactions among scheduling policies: finding efficient queue setup using

high-resolution simulations Euro-Par’14 pp 138–149
[9] Tóth Š and Klusáček D 2013 Tools and methods for detailed analysis of complex job schedules in the Czech

National Grid CGW’13 pp 83–84
[10] Tóth Š and Ruda M 2012 Practical experiences with Torque meta-scheduling in the Czech National Grid

Computer Science 13 2 pp 33-45
[11] Tóth Š 2013 Peer-to-peer scheduling in the Czech National Grid and beyond CGW’13 pp 87–88
[12] Matyska L, Ruda M and Tóth Š 2011 Peer-to-peer cooperative scheduling architecture for national grid

infrastructure Data Driven e-Science pp 105–118
[13] Tóth Š, Ruda M and Tóth Š 2011 Towards peer-to-peer scheduling architecture for the Czedch National Grid

CGW’11 pp 92–101


