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Abstract. We give numerical integration results for Feynman loop diagrams through 3-loop such as those
covered by Laporta [1]. The methods are based on automatic adaptive integration, using iterated integration
and extrapolation with programs from the QUADPACK package, or multivariate techniques from the ParInt
package. The Dqags algorithm from QUADPACK accommodates boundary singularities of fairly general
types. PARINT is a package for multivariate integration layered over MPI (Message Passing Interface),
which runs on clusters and incorporates advanced parallel/distributed techniques such as load balancing
among processes that may be distributed over a network of nodes. Results are included for 3-loop self-
energy diagrams without IR (infra-red) or UV (ultra-violet) singularities. A procedure based on iterated
integration and extrapolation yields a novel method of numerical regularization for integrals with UV terms,
and is applied to a set of 2-loop self-energy diagrams with UV singularities.

1. Introduction
The techniques in this paper are based on automatic integration, which is a black-box approach to
generate an approximation Q(f) to an integral If =

∫
D f(~x) d~x and an absolute error estimate Ef ,

in order to satisfy a specified accuracy requirement for the actual error. We use an accuracy requirement
of the form

|Qf − If | ≤ Ef ≤ max { ta , tr | If | } (1)

for a given integrand function f, region D and (absolute/relative) error tolerances ta and tr, respectively.
In order to achieve Eq (1), the actual error should not exceed the error estimate Ef, and the error estimate
should not exceed the weakest of the absolute and relative error tolerances (indicated by the maximum
taken on the right of Eq (1)). This type of accuracy requirement is based on [2] and used extensively in
QUADPACK [3].

Known methods for parallelization of these procedures include:
(i) Parallelization on the rule or points level: typically in non-adaptive algorithms, e.g., for Monte-
Carlo (MC) algorithms and composite rules using grid or lattice points. Then in If =

∫
D f ≈∑

k wkf(~xk) the function evaluations f(~xk) are performed in parallel.
(ii) Parallelization on the region level: in adaptive (region-partitioning) methods. These lead to task pool
strategies, which may benefit from load balancing on distributed memory systems; or maintain a shared
priority queue on shared memory systems.



(iii) We added multi-threading to iterated integration [4, 5, 6]: the inner integrals are independent
and computed in parallel, e.g., over a subregion S = D1 × D2 (with inner region D2) consider∫
S F (~x)dx ≈

∑
k wkF (~xk), with F (~xk) =

∫
D2
f( ~xk, ~y)d~y. The inner integrations can be performed

adaptively, which we applied in iterated versions of the 1D QUADPACK program DQAGS [3, 7].
We apply numerical extrapolation to integrals with an asymptotic expansion in the dimensional

regularization parameter ε, of the form

S(ε) ∼
∑
k≥K

Ckϕk(ε) as ε→ 0. (2)

For example, the ϕk(ε) functions may be integer powers of ε, ϕk(ε) = εk. Then for finite integrals
K = 0 and the integral is represented by C0. Linear extrapolation can be applied when the ϕk(ε)
functions are known. In that case, S(ε) is approximated for decreasing values of ε = ε`, and Eq (2) is
truncated after 2, 3, . . . , ν terms to form linear systems of increasing size in the Ck variables.

As the integral approximation generally becomes harder with smaller ε, we use slowly decreasing
sequences {ε`}, such as a geometric sequence with base 1/1.2. Another sequence of interest is based on
the Bulirsch sequence 1, 2, 3, 4, 6, 8, 12, 16, 24, . . . , (see [8]); we employ {1/bj}j≥J , from a starting
index J in the Bulirsch sequence. We resort to non-linear extrapolation when the structure of the
asymptotic expansion is not known. In previous work we have made ample use of the ε-algorithm [9, 10],
which can be applied with geometric sequences of ε.

Section 2 covers some background and notations for multi-loop integrals, and presents numerical
results obtained with the PARINT package [11] for a set of 3-loop self-energy Feynman diagrams. These
do not exhibit IR or UV singularities. Integrals with UV singularities are specified in Section 3, with their
asymptotic expansions in the dimensional regularization parameter ε. In Section 3 we describe a novel
method of numerical regularization for integrals with UV singularities, based on iterated integration and
linear extrapolation, which is applied to a set of 1- and 2-loop self-energy diagrams. Section 4 shows
numerical results of the regularization procedure.

2. Feynman loop integrals
Higher order corrections are required for accurate theoretical predictions of the cross-section for particle
interactions. Loop diagrams are taken into account, leading to the evaluation of loop integrals. The
derivation of a closed analytic form is sometimes hard for the higher order loop integrals with arbitrary
internal masses and external momenta. Thus we resort to numerical calculations.

A L-loop integral with N internal lines can be represented in Feynman parameter space by

I =
Γ
(
N − nL

2

)
(4π)nL/2

(−1)N
∫ 1

0

N∏
r=1

dxr δ(1−
∑

xr)
CN−n(L+1)/2

(D − i%C)N−nL/2
, (3)

where C and D are polynomials determined by the topology of the corresponding diagram and physical
parameters (C = 1 for 1-loop (L = 1) integrals). The integration in Eq (3) is taken over the N -
dimensional unit cube. However, as a result of the δ-function one of the xr can be expressed in terms of
the other ones, which reduces the integral dimension toN−1 and the domain to the (N−1)-dimensional
unit simplex. In the absence of IR and UV singularities, n = 4. For dimensional regularization in case
of IR singularities we set n = 4 + 2ε (cf, [12]); and for UV singularities n = 4− 2ε. We apply the
regularization by a numerical extrapolation as ε→ 0.

The term i%C prevents the integral from diverging if the denominator vanishes in the interior of
the domain. Results using iterated integration with QUADPACK programs and extrapolation were given
in [13, 7]. However with the parameters of Laporta [1], which we use in this paper, the denominator does
not vanish inside the integration domain. In this case we can take ρ = 0 in the integrand of (3).

Integral approximations obtained with PARINT for 2-loop double-triangle (N = 5), tetragon-triangle
(N = 6), pentagon-triangle (N = 7), ladder and crossed ladder (N = 7) were presented in [6]. A set of
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Figure 1. 3-loop diagrams (a) N = 7 (Laporta[1] Fig 2(q)), (b) N = 7 (Laporta[1] Fig 2(r)), (c) N = 7
(Laporta[1] Fig 2(s)), (d) N = 8 (Laporta[1] Fig 2(t)), (e) N = 8 (Laporta[1] Fig 2(u), (f) N = 8
(Laporta[1] Fig 2(v))

Table 1. Parallel performance of PARINT (on MPI) for 3-loop diagrams of Fig 1, abs. tolerance ta = 5 × 10−10, and max.
number of evaluations = 10B

3-loop N Result Result Result T1[s] T64[s] S64

diag. Laporta [1] p = 1 p = 64

Fig 1 (a) 7 1.32644820827 1.326448206 1.32644819 902.7 15.8 57.1
Fig 1 (b) 7 1.34139924145 1.34139924147 1.3413992416 1026.2 14.4 71.3
Fig 1 (c) 7 2.00250004111 2.00250004113 2.0025000412 879.3 13.4 65.6
Fig 1 (d) 8 0.27960892328 0.2796089227 0.279608920 1019.7 15.9 64.1
Fig 1 (e) 8 0.18262723754 0.1826272372 0.1826272368 1018.3 15.8 64.4
Fig 1 (f) 8 0.14801330396 0.1480133036 0.1480133026 976.6 16.4 59.5

3-loop self-energy diagrams is given in Fig 1, with corresponding PARINT performance results in Table 1.
In order to compare our integral approximations with Laporta’s [1], we set all massesmr = 1 and s = 1.
Note that Laporta’s method is based on the numerical solution of systems of difference equations. For our
numerical integration we transform the unit simplex domain of Eq (3) to the (N − 1)-dimensional unit
cube, and apply an integration rule of polynomial degree of precision 9 (from [14]) over the individual
subregions resulting in the adaptive partitioning. The approximations thus obtained are more accurate
than those generated with the multivariate simplex rules in PARINT, without the transformation. We
set the absolute tolerance to ta = 5 × 10−10 and the maximum number of integrand evaluations to
10B = 1010 (which was reached in producing the results of Table 1).

The results in Table 1 are given for p = 1 and for p = 64 MPI processes. T1 is the time with
one process and T64 is the parallel time on our cluster with p = 64 processes (distributed over four
16-core, 2.6 GHz compute nodes). The speedup S64 = T1/T64 is (sequential time)/(parallel time). Note
that superlinear speedups (S64) are obtained in some cases, where the speedup exceeds the number of
processes. This is partially due to the fact that the timing is done within PARINT, after the processes are
started. The function evaluations are distributed over all the processes. Furthermore, the load balancing
option is turned on, as well as letting the controller process act as a worker and participate in the region
partitioning. However the adaptive partioning reaches somewhat more accuracy sequentially. Each
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Figure 2. UV diagrams: (a) 1-loop self energy N = 2 (Laporta [1] Fig 2(a)), (b) sunrise-sunset
N = 3(Laporta [1] Fig 2(b)), (c) ”lemon”N = 4 (Laporta [1] Fig 2(c)), (d) ”half-boiled egg” (Kato [16]
Fig 2)

process has its own priority queue, keyed with the absolute error estimates over their region. Thus
unnecessary work may be done which increases with the number of processes. The presentation of this
paper [15] contains results for ta = 5× 10−8 and a maximum of 5B evaluations, which are run in about
half the time.

3. Ultra-violet (UV) singularities and asymptotics
3.1. Integrals
By replacing C = U and D = UV in Eq (3), the general integral is written as

I =
Γ
(
N − nL

2

)
(4π)nL/2

(−1)N
∫ 1

0

N∏
r=1

dxr
δ(1−

∑
xr)

Un/2(V − i%)N−nL/2
. (4)

In the form of Eq (4), IR divergence occurs through a singularity arising when V vanishes at
the boundaries of the domain. This problem can be addressed by dimensional regularization with
n = 4 + 2ε, which we implemented numerically in [13, 12, 7] by an extrapolation as ε→ 0 (ε > 0).

UV divergence occurs when U vanishes at the boundaries. The Γ-function in (4), if it is divergent,
may contribute to UV divergence. In this paper we treat UV divergence by a dimensional regularization
with n = 4− 2ε, implemented by a numerical extrapolation as ε → 0 after an iterated integration with
DQAGS from QUADPACK [3, 7] (to handle the boundary singularities).

Fig 2 depicts a 1-loop and three 2-loop self-energy diagrams with N = 2, 3, 4 and 5 internal lines.
We refer to the 2-loop self energy diagrams (b), (c) and (d) as the sunrise-sunset, lemon and half-boiled
egg diagram, respectively. Analytic results for the integrals have been derived by many authors. We use
the formulas of Kato [16] for the functions U and V in (4). Let V =

∑
r xrm

2
r − s

UW, s = q2 = 1, all
masses mr = 1 and n = 4− 2ε.
− In the case of the 1-loop self-energy diagram (Fig 2(a)), with L = 1, N = 2, the integrand has U = 1
and W = x1x2 = x1(1− x1), so V = x21 − x1 + 1; we denote

I1 = Γ(ε)

∫ 1

0

1

(x21 − x1 + 1)ε
dx1. (5)



− For the sunrise-sunset diagram (Fig 2(b)) we have L = 2, N = 3 and

Is = (−1)Γ(−1 + 2ε)

∫ 1

0
dx1dx2dx3 δ(1−

∑
r

xr)
(V − iρ)1−2ε

U2−ε (6)

with U = x1x2 + x2x3 + x3x1, W = x1x2x3.
− The integral for the lemon diagram (Fig 2(c)) with L = 2, N = 4 is

Il = Γ(2ε)

∫ 1

0
dx1dx2dx3dx4 δ(1−

∑
r

xr)
1

U2−ε (V − iρ)2ε
(7)

where U = x12x34 + x1x2, W = x4(x1x2 + x2x3 + x3x1).
− The half-boiled egg diagram (Fig 2(d)) with L = 2, N = 5 gives rise to

Ih = (−1)Γ(1 + 2ε)

∫ 1

0
dx1dx2dx3dx4dx5 δ(1−

∑
r

xr)
1

U2−ε (V − iρ)1+2ε
(8)

where U = x12x345 + x1x2, W = x5(x12x34 + x1x2).

3.2. Asymptotic expansions for UV integrals
The integrals in Eqs (5)-(8) are expanded with respect to the dimensional regularization parameter ε. The
expansions are of the form of Eq (2),

S(ε) ∼
∑
k≥K

Ckε
k as ε→ 0, (9)

and we use linear extrapolation to approximate the coefficients of the leading terms. For the 1-loop,
sunrise-sunset, and lemon integrals we expand S(ε) = I(ε)Γ(1 + ε)−L where the integral I is I1, Is and
Il, respectively. Section 4 compares corresponding extrapolation results with those given by Laporta [1]:

I1(ε) Γ(1 + ε)−1 ∼
∑
k≥−1

Ckε
k = ε−1 + 0.186200635766 + 0.021156303568 ε+ 0.00172674535 ε2 . . . (10)

Is(ε) Γ(1 + ε)−2 ∼
∑
k≥−2

Ckε
k = −1.5 ε−2 − 4.25 ε−1 − 7.375 − 17.22197253479 ε . . . (11)

Il(ε) Γ(1 + ε)−2 ∼
∑
k≥−2

Ckε
k = 0.5 ε−2 + 0.6862006357658 ε−1 − 0.6868398873414 + 1.486398391913 ε . . . (12)

Note that the value ofK in (9) corresponds with the index of the first coefficient CK in the expansion. In
that case we find that, if K is replaced by K− 1 for the extrapolation, then the first coefficient converges
to CK−1 = 0.

The half-boiled egg diagram is not covered in [1]. In order to compare with the leading order terms
of [16] we expand

Îh(ε) = Ih(ε)/((−1)Γ(1 + 2ε)) ∼
∑
k≥−1

Ĉkε
k (13)

with I(ε) as in Eq (8). The analytic results in [16] are:

Ĉ−1 = J1 =

∫ 1

0

ρ′

M2
0 − sG0

dρ′ (14)

Ĉ0 = −3

2
J1 − 2J2 + IB (15)



Table 2. Results UV 1-loop self-energy integral (on Mac Pro, 2.6 GHz Intel Core i7, 16GB memory, OS X), err. tol.
tr = 10−14, T (s) = Time (elapsed user time) (s); ε = 1/b` (starting at 1/6), Er = integration estim. rel. error

INTEGRAL I1 EXTRAPOLATION
b` Ea T(S) RESULT C−1 RESULT C0 RESULT C1 RESULT C2

6 5.0e-15 1.2e-5
8 5.0e-15 2.0e-6 0.99954860270457280 0.192483548522
12 5.0e-15 2.0e-6 1.00000307032894753 0.186121001781 0.021814445970
16 5.0e-15 2.0e-6 0.99999998779988053 0.186201147537 0.021148619692 0.00177553674
24 5.0e-15 2.0e-6 1.00000000002646638 0.186200634020 0.021156346896 0.00172623915
32 5.0e-15 2.0e-6 0.99999999999996125 0.186200635770 0.021156303426 0.00172674805
48 5.0e-15 2.0e-6 0.99999999999999878 0.186200635766 0.021156303565 0.00172674537
64 5.0e-15 2.0e-6 1.00000000000000000 0.186200635766 0.021156303578 0.00172674499

Eq (10): 1.0 0.186200635766 0.021156303568 0.00172674535

with

J2 =

∫ 1

0

ρ′ log(M2
0 − sG0)

M2
0 − sG0

dρ′ (16)

IB =

∫ 1

0

dρ

∫ 1

0

dξ

∫ 1

0

dρ′(1− ρ)2ρ′
M2

0 − F 2M2 − s(G0 − FG)

ρF (FM2 − sG)(M2
0 − sG0)

(17)

where s = 1 and

F = 1 − ρ+ ρξ(1 − ξ), F0 = F (ρ = 0) = 1

G = (1 − ρ)(1 − ρ′)((1 − ρ)ρ′ + ρξ(1 − ξ)), G0 = G(ρ = 0) = (1 − ρ′)ρ′

M2 =
∑
r

xrm
2
r, M

2
0 = M2(ρ = 0) = ρ′m2

3 + (1 − ρ′)m2
5 (18)

The latter holds under the assumption m3 = m4. We further have M2
0 = M2 = 1 in (18) in view of

mr = 1, 1 ≤ r ≤ 5. Note that Ĉ−1 = C−1 in the expansion of Ih =
∑

k≥−1Ckε
k, but Ĉ0 6= C0.

4. Numerical extrapolation results for UV singularities
Tables 2 and 3 show the convergence of the extrapolation method for the integrals I1 and Il of Eqs (5)
and (7), respectively. These were run on a Mac Pro, 2.6 GHz Intel Core i7, with 16 GB memory, under OS
X. The elapsed user time T (s) (in seconds) is listed for each integration. The time for the extrapolation
is negligible compared to that of the integration. We use a standard linear system solver to solve very
small systems (of sizes 2 × 2 up to around 15 × 15 for the cases in this paper). As the sequence of the
extrapolation parameter ε` we used {1/b`} where {b`} is the Bulirsch sequence [8] started at an early
index. Alternatively a slowly decreasing geometric sequence could be used - we plan on further testing
with different sequences.

The convergence results in Tables 2 and 3 show excellent agreement with the expansion coefficients
in [1] (see Eqs (10) and (12)). Throughout the extrapolation we keep track of the difference with the
previous result as a measure of convergence. Increases of the distance between successive extrapolation
results are an indicator that the convergence is no longer improving and the process can be terminated.

For the half-boiled egg integral we can compute J1 in the analytic expressions of Eq (14) and J2
of Eq (16) using DQAGE from QUADPACK [3, 7], yielding J1 ≈ 0.6045997880780727 with absolute
error estimate 1.6e-15, and J2 ≈ −0.11708165598778085 with absolute error estimate 1.3e-17 on Mac
Pro. In view of boundary singularities we use iterated integration by DQAGS for IB of Eq (17) and
obtain IB ≈ 0.4970393699155826 with outer absolute error estimate 1.22e-15 (note that this error
estimate does not include contributions from the inner integral error estimates). Then, using Eq (14) and
Eq (15) we find Ĉ−1 = J1 ≈ 0.604599788078210687 and Ĉ0 ≈ −0.175697000225964850 for the first
two coefficients of the expansion in Eq (13). As shown in Table 4, good approximations are generated
by linear extrapolation.



Table 3. Results UV lemon integral (on Mac Pro), err. tol. tr = 10−10 (outer), 5 × 10−11 (inner two), T (s) = Time
(elapsed user time) (s); ε = 1/b` (starting at 0.25), Er = outer integration estim. rel. error

INTEGRAL Il EXTRAPOLATION
b` Er T(S) RESULT C−2 RESULT C−1 RESULT C0 RESULT C1

4 3.5e-11 0.36
6 8.8e-11 0.34 0.5130221162587 0.52467607220
8 2.9e-12 0.34 0.5031467341833 0.62342989295 -0.237009170
12 3.4e-12 0.40 0.5004379328119 0.67218831764 -0.518724512 0.5200899
16 1.5e-11 0.41 0.5000485801347 0.68386889795 -0.643317369 1.0807577
24 4.7e-11 0.39 0.5000037328535 0.68593187289 -0.679195194 1.3749558
32 4.1e-11 0.38 0.5000002195177 0.68617780639 -0.685884585 1.4654594
48 1.4e-11 0.43 0.5000000087538 0.68619930431 -0.686757991 1.4837301
64 1.3e-11 0.44 0.5000000002937 0.68620057333 -0.686834471 1.4861463
96 3.2e-11 0.31 0.5000000000039 0.68620063534 -0.686839872 1.4863967

Eq (12): 0.5 0.68620063577 -0.686839887 1.4863984

Table 4. Results UV half-boiled egg integral (on Mac Pro), err. tol. tr = 10−12 (outer), 5 × 10−13 (inner three), T (s) =
Time (elapsed user time) (s); ε = 1/b` (starting at 1.0), Er = outer integration estim. rel. error

INTEGRAL Îh EXTRAPOLATION
b` Er T(S) RESULT Ĉ−1 RESULT Ĉ0 RESULT Ĉ1 RESULT Ĉ2

1 4.2e-13 7.3
2 3.9e-14 11.4 0.61217953237003 -0.26893337928
3 2.6e-13 10.8 0.62192201629541 -0.29816083105 -0.019484967
4 5.2e-13 10.3 0.60843456496759 -0.21723612309 -0.128876997 0.0809247
6 1.1e-13 14.9 0.60506615959771 -0.18355206939 -0.246771185 0.2493450
8 7.9e-13 9.2 0.60464393463841 -0.17679647004 -0.28688256 0.3591235
12 9.6e-13 12.5 0.60460287243867 -0.17581097725 -0.296039426 0.4010069
16 2.3e-13 19.4 0.60459996124784 -0.17570617438 -0.297527045 0.4117667
24 8.7e-13 19.1 0.60459979484875 -0.17569752162 -0.297707921 0.4137422
32 7.7e-13 24.9 0.60459978828848 -0.17569702304 -0.297723238 0.4139912
32 4.1e-13 33.2 0.60459978807821 -0.17569700033 -0.297724241 0.4140148
32 6.9e-13 20.7 0.60459978807543 -0.17569699990 -0.297724269 0.4140158

Eqs (14)-(15): 0.60459978807807 -0.17569700023

5. Conclusions
This paper presents new results for 2-loop self-energy diagrams (with 2, 3, 4 and 5 internal lines)
with UV terms. These are computed with iterated integration using DQAGS from QUADPACK,
and linear extrapolation, which delivers a novel numerical method for dimensional regularization of
UV singularities. DQAGS is successful at treating the boundary singularities. The extrapolation
yields accurate approximations for the leading term coefficients of the asymptotic expansion in the
regularization parameter. The results so far have been verified with expansions by Laporta [1] and
Kato [16], and we plan on testing the procedure for more complex diagrams.

New results are further obtained with the adaptive multivariate integration code from the
parallel/distributed PARINT package, for 3-loop self-energy diagrams without IR or UV singularities.
The adaptive partitioning strategy is capable of dealing with higher dimensions than the iterated
strategies. On the other hand, while it handles irregular integrand behavior to some extent, it cannot
be expected to adequately partition higher-dimensional spaces in the vicinity of severe singularies.
Future work on PARINT includes testing and incorporation of special summation methods such as Kahan
summation [17, 18, 19] (in view of the large numbers of function evaluations that can be performed
especially on distributed processors). Other work for both the iterated and standard multivariate
integration will be on further efficient parallelizations of the integration work performed throughout
the extrapolation sequence.
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