
Sandro Wenzel / CERN-PH-SFT

In collaboration with: J. Apostolakis (CERN), M. Bandieramonte (University of Catania,
IT), G. Bitzes (CERN), R. Brun (CERN), P. Canal (Fermilab), F. Carminati (CERN), G.
Cosmo (CERN), J. De Fine Licht (CERN), L. Duhem (Intel), D. Elvira (Fermilab), A. Gheata
(CERN), S. Yung Jun (Fermilab), G. Lima (Fermilab), T. Nikitina (CERN), M. Novak (CERN),
R. Sehgal (Bhabha Atomic Research Centre), O. Shadura (CERN)

16th International workshop on Advanced Computing and Analysis Techniques in
physics research (ACAT); Prague 1.9.-5.9.2014

Towards a high performance geometry
library for particle-detector simulation

Sandro Wenzel, ACAT2014

Geometry in simulation

• geometry tasks are a major consumer of CPU cycles in detector
simulation

• most of time spent in interaction with shape primitives which make
up a detector

CMS detector: boxes, trapezoids,
tubes, cones, , polycones, ...

?in or out collision detection
and distance to

enter object

?

minimal(safe)
distance to object

distance to leave
object

• For shape primitives, a geometry library offers an API to ...

2

Sandro Wenzel, ACAT2014

review of ROOT, Geant4, USolids packages
the need to go beyond current implementations
software challenges

Part I: Geometry in simulation

overview
performance and status update

Part II: Introducing “VecGeom”

Part III: Some details on generic programming
approach

shared scalar/vector (CUDA) kernels

Outline

3

Sandro Wenzel, ACAT2014

ROOT/TGeo

GEANT4
geometry
modeler

~2002-~1994-

very widespread in HEP,
medical physics, ...

experiments using virtual
Monte Carlo framework
(ALICE, FAIR) + ...

AIDA USOLIDS

~2010-

EU/AIDA funded effort to merge
the libraries (on shape level):
• merge code base
• pick best implementation
• improve performance
• increase code quality
• increase long term

maintainability

4

Geometry/Solid - Packages

Sandro Wenzel, ACAT2014

ROOT/TGeo

GEANT4
geometry
modeler

~2002-~1994-

very widespread in HEP,
medical physics, ...

experiments using virtual
Monte Carlo framework
(ALICE, FAIR) + ...

improvements:
• new polycone (~8x faster

than Geant4/Root)

completely new
features:
• multi-union, tesselated

solids

AIDA USOLIDS

~2010-

EU/AIDA funded effort to merge
the libraries (on shape level):
• merge code base
• pick best implementation
• improve performance
• increase code quality
• increase long term

maintainability

4

Geometry/Solid - Packages

Sandro Wenzel, ACAT2014

• USolids made a big step forward improving shape primitive code

• experiments are able to see the benefits now; USolids can be used
in Geant4 simulations today! PLEASE TRY !!

5

New needs/beyond USolids

Sandro Wenzel, ACAT2014

• USolids made a big step forward improving shape primitive code

• experiments are able to see the benefits now; USolids can be used
in Geant4 simulations today! PLEASE TRY !!

• no interfaces to process many particles at once

• no use of external/internal SIMD vectorization

• no use of HPC features of C++
(“templates”) which could further improve
performance

• (no library support on GPU)

but: new needs/requirements not yet
addressed by current implementations

goals

5

New needs/beyond USolids

Sandro Wenzel, ACAT2014

Targeting vectorization

• these instructions have to be used to efficiently use compute
architecture; need to have “vector” data on which we apply the
same tasks

• vector instructions getting more important; vector registers
becoming wider

6

Sandro Wenzel, ACAT2014

Targeting vectorization

• these instructions have to be used to efficiently use compute
architecture; need to have “vector” data on which we apply the
same tasks

• vector instructions getting more important; vector registers
becoming wider

“parallel” collision
detection

?

outer vectorization

makes “future” code
faster

6

Sandro Wenzel, ACAT2014

Targeting vectorization

• these instructions have to be used to efficiently use compute
architecture; need to have “vector” data on which we apply the
same tasks

• vector instructions getting more important; vector registers
becoming wider

“parallel” collision
detection

?

outer vectorization

makes “future” code
faster

internal vectorization

beneficial for current
simulations

vectorization of inner loops; not common
in shape code; but feasible for a couple of
shapes (trapezoid)

internal loop over
lateral planes for

distance calc

6

Sandro Wenzel, ACAT2014

Software challenges implied by goals

• How do we achieve reliable vectorization on CPU ??

7

Sandro Wenzel, ACAT2014

Software challenges implied by goals

• How do we achieve reliable vectorization on CPU ??

 >4 new functions
per solid

~20 primitive
solids

~100 new functions to
maintain (not including CUDA

yet ...)

• How do we cope with the multiplication of
interfaces ... ?

double DistanceToIn(1 particle)
double* DistanceToIn(many particles)
bool Contains (1 particle)
bool* Contains (many particles)
double SafetyToIn(1 particle)
double* SafetyToIn(many particles)
double DistanceToOut (1 particle)
double* DistanceToOut(many particles)
….

x,y,z
Box

7

Sandro Wenzel, ACAT2014

Approach to target software challenge

1 particle
API

many particle
API

solid primitives

common C++
template functions

8

• template C++ programming
solves code multiplication
issue

Sandro Wenzel, ACAT2014

Approach to target software challenge

1 particle
API

many particle
API

solid primitives

common C++
template functions

8

• template C++ programming
solves code multiplication
issue

scalar types vector types

• reliable efficient SIMD
vectorization achieved by
using vector libraries
(e.g. Vc) providing C++
approach to explicit
vectorization
http://code.compeng.uni-frankfurt.de/projects/vc

http://code.compeng.uni-frankfurt.de/projects/vc
http://code.compeng.uni-frankfurt.de/projects/vc

Sandro Wenzel, ACAT2014

Approach to target software challenge

1 particle
API

many particle
API

solid primitives

common C++
template functions

8

• template C++ programming
solves code multiplication
issue

•nothing here is specific to
geometry !!!

scalar types vector types

• reliable efficient SIMD
vectorization achieved by
using vector libraries
(e.g. Vc) providing C++
approach to explicit
vectorization
http://code.compeng.uni-frankfurt.de/projects/vc

http://code.compeng.uni-frankfurt.de/projects/vc
http://code.compeng.uni-frankfurt.de/projects/vc

Sandro Wenzel, ACAT2014

“VecGeom”

ROOT/TGeo

GEANT4
geometry
modeler AIDA USOLIDS

~2010-~2002-~1994- ~2013-

• geometry primitive code development is now seen
as long-term evolution of USolids
• already developed back-to-back with USolids;

sharing a repository; same interfaces

• started as feasibility study of vectorization in
geometry
• now “evolved” to project addressing all goals and

challenges presented

codename “VecGeom”

9

Sandro Wenzel, ACAT2014

Part II: Status + Performance

10

Sandro Wenzel, ACAT2014

Performance case study: the tube segment

• most used/important shape primitive

• also integral part of complex shapes: polycone

• extremely important to be as fast as we can

gcc 4.7; -O3 -funroll-loops -mavx; no FMA; Geant4 10 (Release); Root 5.34.18 (Release); benchmark with 1000 particles 11

Sandro Wenzel, ACAT2014

0

375

750

1125

1500

DistanceToIn SafetyToIn In-or-Out?

ROOT
Geant4
USolids
VecGeom ScalarAPI
VecGeom ManyParticle API

R
O

O
T

G
4

U
S

o
li

d
s

V
e

cG
e

o
m

 s
ca

la
r

V
M

P

tim
e

un
its

Performance case study: the tube segment

• most used/important shape primitive

• also integral part of complex shapes: polycone

• extremely important to be as fast as we can

gcc 4.7; -O3 -funroll-loops -mavx; no FMA; Geant4 10 (Release); Root 5.34.18 (Release); benchmark with 1000 particles 11

Sandro Wenzel, ACAT2014

0

375

750

1125

1500

DistanceToIn SafetyToIn In-or-Out?

ROOT
Geant4
USolids
VecGeom ScalarAPI
VecGeom ManyParticle API

R
O

O
T

G
4

U
S

o
li

d
s

V
e

cG
e

o
m

 s
ca

la
r

V
M

P

tim
e

un
its

Performance case study: the tube segment

• most used/important shape primitive

• also integral part of complex shapes: polycone

• extremely important to be as fast as we can

improved
scalar
performance
• improved

algorithms
(avoid atan2)

• template shape
specialization

gcc 4.7; -O3 -funroll-loops -mavx; no FMA; Geant4 10 (Release); Root 5.34.18 (Release); benchmark with 1000 particles 11

Sandro Wenzel, ACAT2014

0

375

750

1125

1500

DistanceToIn SafetyToIn In-or-Out?

ROOT
Geant4
USolids
VecGeom ScalarAPI
VecGeom ManyParticle API

R
O

O
T

G
4

U
S

o
li

d
s

V
e

cG
e

o
m

 s
ca

la
r

V
M

P

tim
e

un
its

Performance case study: the tube segment

• most used/important shape primitive

• also integral part of complex shapes: polycone

• extremely important to be as fast as we can

improved
scalar
performance
• improved

algorithms
(avoid atan2)

• template shape
specialization

excellent
SIMD vector
performance

total speedup cmp
to USolids3.3x 7x 13.62x

gcc 4.7; -O3 -funroll-loops -mavx; no FMA; Geant4 10 (Release); Root 5.34.18 (Release); benchmark with 1000 particles 11

Sandro Wenzel, ACAT2014

0!

0.025!

0.05!

0.075!

0.1!

box

orb

“trd”

trapezoid

parallelepiped

paraboloid

tube
segment

tube

Solid/shape implementation status; performance

timings for collision
detection for
various primitives

timing points form
a polygon per
library

12

ROOT

Sandro Wenzel, ACAT2014

0!

0.025!

0.05!

0.075!

0.1!

0!

0.025!

0.05!

0.075!

0.1!

GEANT4

VecGeom
MP

VecGeom
Scalar

box

orb

“trd”

trapezoid

parallelepiped

paraboloid

tube
segment

tube

Solid/shape implementation status; performance

timings for collision
detection for
various primitives

smaller area =
better library
performance

timing points form
a polygon per
library

12

ROOT

Sandro Wenzel, ACAT2014

going complex...
• boolean solids are an important element in detector

construction (subtraction solid, union solid)

• Geant4+Root offer construction of such objects based on a
solid base class and virtual functions

SubtractionSolid(AbstractShape * left, AbstractShape * right);

13

Sandro Wenzel, ACAT2014

going complex...
• boolean solids are an important element in detector

construction (subtraction solid, union solid)

• Geant4+Root offer construction of such objects based on a
solid base class and virtual functions

template <typename LeftSolid, typename RightSolid>
class TSubtractionSolid
{
 TSubtractionSolid(LeftSolid * left, RightSolid * right);
};

• compiler can produce optimized code for any combination of primitive
shapes (“template-shape specialization”)

• no virtual function calls

• vectorization comes from reusing vector functions of components

• now offer advanced way to combine shapes (ala stl)

SubtractionSolid(AbstractShape * left, AbstractShape * right);

13

Sandro Wenzel, ACAT2014

going complex (condt)

• performance example for a subtraction solid “box minus
tubesegment” (in CMS detector)

0

375

750

1125

1500

In-or-Out? DistanceToOut SafetyToOut

 SIMD/Geant4 speedup: 6.6x 3.2x 17x

 SIMD/ROOT speedup: 8x 4.6x 31x

gcc 4.7; -O3 -funroll-loops -mavx; no FMA; Geant4 10 (Release); Root 5.34.18 (Release)

R
O

O
T

G
4

V
G

S

V
M

P

14

ROOT
Geant4
VecGeom S
VecGeom MP

Sandro Wenzel, ACAT2014

“VecGeom” and Geant-V

1 particle
API

many
particle

API
targeting

SIMD
vectorizat

ion

(templated/
specialized)

solid primitives

common C++
template functions

Geant-V / GPU prototype need
additional library components to fully
use vectorized shapes:
• shape hierarchies on CPU + GPU
• vector navigator

target use

functionality to
create hierarchies of
volumes = detector

on CPU + GPU

detector
description

detector
navigation

Scalar
navigation

Vector
navigation

15

Sandro Wenzel, ACAT2014

“VecGeom” in action

• Geant-Vector prototype can run complete first particle-detector
simulations using VecGeom (or with ROOT/TGeo)

• measured a total simulation runtime improvement of
40% going from ROOT/TGeo to VecGeom for small example

0

1.50

3.00

4.50

6.00

w
ith

T
G

eo w
ith

Ve
cG

eo
m

• should be able to simulate with CMS detector soonish

Preliminary performance checks
•  Simple example imported from GEANT4

novice examples
•  Scintillator+absorber calorimeter
•  30 MeV to 30 GeV electrons, 100K primaries
•  Physics reproduced, small differences to be

investigated for the highest energy
•  No energy dependence of performance

gain
•  Extension to (simple version of) CMS geometry

soon possible

Andrei Gheata, ACAT 2014 32

ExN03 example

Pb Scintillator

16

Sandro Wenzel, ACAT2014

Part III: Some details on programming approach

17

Sandro Wenzel, ACAT2014

achieving shared scalar / vector code

1 particle
API

many
particle

API
targeting

SIMD
vectorizat

ion

common C++
template functions

Vc::double_v distance(Vc::double_v);

double distance(double);
remember...

18

Sandro Wenzel, ACAT2014

achieving shared scalar / vector code

1 particle
API

many
particle

API
targeting

SIMD
vectorizat

ion

common C++
template functions

Vc::double_v distance(Vc::double_v);

double distance(double);

template<class Backend>
Backend::double_t
common_distance_function(Backend::double_t input)
{
 // complicated code implementing this function
 // using abstract types that Backend provides
}

remember...

18

Sandro Wenzel, ACAT2014

achieving shared scalar / vector code

1 particle
API

many
particle

API
targeting

SIMD
vectorizat

ion

common C++
template functions

Vc::double_v distance(Vc::double_v);

double distance(double);

template<class Backend>
Backend::double_t
common_distance_function(Backend::double_t input)
{
 // complicated code implementing this function
 // using abstract types that Backend provides
}

struct ScalarBackend
{
 typedef double double_t;
 typedef bool bool_t;
 static const bool IsScalar=true;
 static const bool IsSIMD=false;
};

struct VectorBackend
{
 typedef Vc::double_v double_t;
 typedef Vc::double_m bool_t;
 static const boolIsScalar=false;
 static const bool IsSIMD=true;
};

attention: this is not valid C++ code; need an additional “typename” before Backend

• “Backend” is a (trait) struct encapsulating standard types/
properties for “scalar, vector, CUDA” programming; makes
information injection into template function easy

remember...

18

Sandro Wenzel, ACAT2014

double
Point::Distance(Vector3D<double> a)
{
 return
 DistanceKernel<ScalarBackend>(a);
}

Vc::double_v
Point::Distance(Vector3D<Vc::double_v> a)
{
 return
 DistanceKernel<VectorBackend>(a);
}

•toy example: calculate distance of particles to a
Point represented by class Point with members
(fX,fY,fZ)

•Point class offers 2 “distance” interfaces inlining
same template function

shared scalar-vector code: example

attention: this is not valid C++ code; need an additional “typename” before Backend

double Distance(Vector3D<double> …)
double_v Distance(Vector3D<double_v> …)

fX, fY, fZ
Point

19

Sandro Wenzel, ACAT2014

double
Point::Distance(Vector3D<double> a)
{
 return
 DistanceKernel<ScalarBackend>(a);
}

Vc::double_v
Point::Distance(Vector3D<Vc::double_v> a)
{
 return
 DistanceKernel<VectorBackend>(a);
}

•toy example: calculate distance of particles to a
Point represented by class Point with members
(fX,fY,fZ)

•Point class offers 2 “distance” interfaces inlining
same template function

shared scalar-vector code: example

attention: this is not valid C++ code; need an additional “typename” before Backend

double Distance(Vector3D<double> …)
double_v Distance(Vector3D<double_v> …)

fX, fY, fZ
Point

template<typename Backend>
inline __attribute__((always_inline))
Backend::double Point::DistanceKernel(Vector3D<Backend::double_t> const & point)
{
 Backend::double_t xp = fX - point.x();
 Backend::double_t yp = fY - point.y();
 Backend::double_t zp = fZ - point.z();
 // might have some Backend specific code
 if(Backend::IsScalar)
 {
 // we are able to diverge the code paths between different backends
 }
 return Sqrt(xp*xp + yp*yp + zp*zp);
}

produces solid SIMD code

19

Sandro Wenzel, ACAT2014

Summary

• VecGeom is a detector geometry library which:

• is fast

• offers vectorized multi-particle treatment

• follows generic programming approach
to reduce code size

• (supports CUDA and GPU)

• development model could be extended to other
components of Geant-V prototype

20

Sandro Wenzel, CERN-PH-SFT ACAT Prague 2014

Backup

21

Sandro Wenzel

Shape specialization by example
template<typename TubeType>
class
SpecTube{
 // ...
 bool Inside(Vector3D const &) const;
 //...
};

if statements (“branches”) in generic code can be compiled away

AbstractTube

Inside
SpecTube

 TubeType

template<typename TubeType>
bool SpecTube<TubeType>::Inside(Vector3D const & x) const
{
! // checkContainedZ
! if(std::abs(x.z) > fdZ) return false;

! // checkContainmentR
! double r2 = x.x*x.x + x.y*x.y;
! if(r2 > fRmaxSqr) return false;

! if (TubeType::NeedsRminTreatment)
! {
! ! if(r2 < fRminSqr) return false;
! }

! if (TubeType::NeedsPhiTreatment)
! {
! ! // some code
! }
! return true;
}

we can express “static” ifs as
compile-time if statements
(e.g. via const properties of

TubeType)

gets optimized away if a certain
TubeType does not need this code

compiler creates different binary
code for different TubeTypes

22

