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Geometry in simulation

• geometry tasks are a major consumer of CPU cycles in detector 
simulation

• most of time spent in interaction with shape primitives which make 
up a detector

CMS detector: boxes, trapezoids, 
tubes, cones, .... , polycones, ...

?in or out collision detection 
and distance to 

enter object

?

minimal(safe) 
distance to object

distance to leave 
object

• For shape primitives, a geometry library offers an API to ...

2



Sandro Wenzel, ACAT2014

review of ROOT, Geant4, USolids packages
the need to go beyond current implementations
software challenges

Part I: Geometry in simulation

overview
performance and status update

Part II: Introducing “VecGeom”

Part III: Some details on generic programming 
approach

shared scalar/vector (CUDA) kernels

Outline
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ROOT/TGeo

GEANT4 
geometry 
modeler

~2002-~1994-

very widespread in HEP, 
medical physics, ...

experiments using virtual 
Monte Carlo framework 
(ALICE, FAIR) + ...

AIDA USOLIDS

~2010-

EU/AIDA funded effort to merge 
the libraries (on shape level):
• merge code base
• pick best implementation
• improve performance
• increase code quality
• increase long term 

maintainability
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ROOT/TGeo

GEANT4 
geometry 
modeler

~2002-~1994-

very widespread in HEP, 
medical physics, ...

experiments using virtual 
Monte Carlo framework 
(ALICE, FAIR) + ...

improvements:
• new polycone (~8x faster 

than Geant4/Root)

completely new 
features:
• multi-union, tesselated 

solids

AIDA USOLIDS

~2010-

EU/AIDA funded effort to merge 
the libraries (on shape level):
• merge code base
• pick best implementation
• improve performance
• increase code quality
• increase long term 

maintainability
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• USolids made a big step forward improving shape primitive code

• experiments are able to see the benefits now; USolids can be used 
in Geant4 simulations today! PLEASE TRY !!

5

New needs/beyond USolids
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• USolids made a big step forward improving shape primitive code

• experiments are able to see the benefits now; USolids can be used 
in Geant4 simulations today! PLEASE TRY !!

• no interfaces to process many particles at once

• no use of external/internal SIMD vectorization

• no use of HPC features of C++ 
(“templates”) which could further improve 
performance

• (no library support on GPU)

but: new needs/requirements not yet 
addressed by current implementations

goals

5

New needs/beyond USolids
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Targeting vectorization

• these instructions have to be used to efficiently use compute 
architecture; need to have “vector” data on which we apply the 
same tasks

• vector instructions getting more important; vector registers 
becoming wider

6



Sandro Wenzel, ACAT2014

Targeting vectorization

• these instructions have to be used to efficiently use compute 
architecture; need to have “vector” data on which we apply the 
same tasks

• vector instructions getting more important; vector registers 
becoming wider

“parallel” collision 
detection

?

outer vectorization

makes “future” code 
faster
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Targeting vectorization

• these instructions have to be used to efficiently use compute 
architecture; need to have “vector” data on which we apply the 
same tasks

• vector instructions getting more important; vector registers 
becoming wider

“parallel” collision 
detection

?

outer vectorization

makes “future” code 
faster

internal vectorization

beneficial for current 
simulations

vectorization of inner loops; not common 
in shape code; but feasible for a couple of 
shapes (trapezoid)

internal loop over 
lateral planes for 

distance calc
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Software challenges implied by goals

• How do we achieve reliable vectorization on CPU ??
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Software challenges implied by goals

• How do we achieve reliable vectorization on CPU ??

 >4 new functions 
per solid

~20 primitive 
solids

~100 new functions to 
maintain (  not including CUDA 

yet ... )

• How do we cope with the multiplication of 
interfaces  ... ?

double DistanceToIn(  1 particle ) 
double* DistanceToIn( many particles )
bool    Contains  ( 1 particle )
bool*   Contains ( many particles )
double SafetyToIn(  1 particle )
double* SafetyToIn( many particles )
double DistanceToOut ( 1 particle )
double* DistanceToOut( many particles )
….

x,y,z
Box
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Approach to target software challenge

1 particle 
API

many particle 
API

solid primitives

common C++ 
template functions

8

• template C++ programming 
solves code multiplication 
issue
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Approach to target software challenge

1 particle 
API

many particle 
API

solid primitives

common C++ 
template functions

8

• template C++ programming 
solves code multiplication 
issue

scalar types vector types

• reliable efficient  SIMD 
vectorization achieved by 
using vector libraries 
(e.g. Vc) providing C++ 
approach to explicit 
vectorization
http://code.compeng.uni-frankfurt.de/projects/vc

http://code.compeng.uni-frankfurt.de/projects/vc
http://code.compeng.uni-frankfurt.de/projects/vc
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Approach to target software challenge

1 particle 
API

many particle 
API

solid primitives

common C++ 
template functions

8

• template C++ programming 
solves code multiplication 
issue

•nothing here is specific to 
geometry !!!

scalar types vector types

• reliable efficient  SIMD 
vectorization achieved by 
using vector libraries 
(e.g. Vc) providing C++ 
approach to explicit 
vectorization
http://code.compeng.uni-frankfurt.de/projects/vc

http://code.compeng.uni-frankfurt.de/projects/vc
http://code.compeng.uni-frankfurt.de/projects/vc
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“VecGeom”

ROOT/TGeo

GEANT4 
geometry 
modeler AIDA USOLIDS

~2010-~2002-~1994- ~2013-

• geometry primitive code development is now seen 
as long-term evolution of USolids
• already developed back-to-back with USolids; 

sharing a repository; same interfaces

• started as feasibility study of vectorization in 
geometry
• now  “evolved” to project addressing all goals and 

challenges presented

codename “VecGeom”
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Part II:  Status + Performance
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Performance case study: the tube segment

• most used/important shape primitive

• also integral part of complex shapes: polycone

• extremely important to be as fast as we can

gcc 4.7; -O3 -funroll-loops -mavx; no FMA; Geant4 10 (Release); Root 5.34.18 (Release); benchmark with 1000 particles 11
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Performance case study: the tube segment

• most used/important shape primitive

• also integral part of complex shapes: polycone

• extremely important to be as fast as we can

gcc 4.7; -O3 -funroll-loops -mavx; no FMA; Geant4 10 (Release); Root 5.34.18 (Release); benchmark with 1000 particles 11
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Performance case study: the tube segment

• most used/important shape primitive

• also integral part of complex shapes: polycone

• extremely important to be as fast as we can

improved 
scalar 
performance
• improved 

algorithms 
(avoid atan2)

• template shape 
specialization

gcc 4.7; -O3 -funroll-loops -mavx; no FMA; Geant4 10 (Release); Root 5.34.18 (Release); benchmark with 1000 particles 11
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Performance case study: the tube segment

• most used/important shape primitive

• also integral part of complex shapes: polycone

• extremely important to be as fast as we can

improved 
scalar 
performance
• improved 

algorithms 
(avoid atan2)

• template shape 
specialization

excellent 
SIMD vector 
performance

total speedup cmp 
to USolids3.3x 7x 13.62x

gcc 4.7; -O3 -funroll-loops -mavx; no FMA; Geant4 10 (Release); Root 5.34.18 (Release); benchmark with 1000 particles 11
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0!
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box

orb

“trd”

trapezoid

parallelepiped

paraboloid

tube 
segment

tube

Solid/shape implementation status; performance 

timings for collision 
detection for 
various primitives

timing points form 
a polygon per 
library
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GEANT4

VecGeom 
MP
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Scalar

box

orb

“trd”

trapezoid

parallelepiped

paraboloid

tube 
segment

tube

Solid/shape implementation status; performance 

timings for collision 
detection for 
various primitives

smaller area = 
better library 
performance

timing points form 
a polygon per 
library
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going complex...
• boolean solids are an important element in detector 

construction ( subtraction solid, union solid )

• Geant4+Root  offer construction of such objects based on a 
solid base class and virtual functions

SubtractionSolid( AbstractShape * left, AbstractShape * right );

13
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going complex...
• boolean solids are an important element in detector 

construction ( subtraction solid, union solid )

• Geant4+Root  offer construction of such objects based on a 
solid base class and virtual functions

template <typename LeftSolid, typename RightSolid>
class TSubtractionSolid
{
  TSubtractionSolid( LeftSolid * left, RightSolid * right );
};

• compiler can produce optimized code for any combination of primitive 
shapes ( “template-shape specialization” )

• no virtual function calls

• vectorization comes from reusing vector functions of components

• now offer advanced way to combine shapes ( ala stl )

SubtractionSolid( AbstractShape * left, AbstractShape * right );
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going complex (condt)

• performance example for a subtraction solid “box minus 
tubesegment” ( in CMS detector )
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 SIMD/Geant4 speedup:   6.6x                 3.2x                       17x

 SIMD/ROOT speedup:    8x                   4.6x                       31x 

gcc 4.7; -O3 -funroll-loops -mavx; no FMA; Geant4 10 (Release); Root 5.34.18 (Release)
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“VecGeom” and Geant-V

1 particle 
API

many 
particle 

API
targeting 

SIMD 
vectorizat

ion

(templated/
specialized)

solid primitives

common C++ 
template functions

Geant-V / GPU prototype need 
additional library components to fully 
use vectorized shapes:
• shape hierarchies on CPU + GPU
• vector navigator

target use

functionality to 
create hierarchies of 
volumes = detector 

on CPU + GPU

detector  
description

detector
navigation

Scalar 
navigation

Vector 
navigation 
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“VecGeom” in action

• Geant-Vector prototype can run complete first particle-detector 
simulations using  VecGeom ( or with ROOT/TGeo )

• measured a total simulation runtime improvement of 
40% going from ROOT/TGeo to VecGeom for small example
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• should be able to simulate with CMS detector soonish ....

Preliminary performance checks 
•  Simple example imported from GEANT4 

novice examples 
•  Scintillator+absorber calorimeter 
•  30 MeV to 30 GeV electrons, 100K primaries 
•  Physics reproduced, small differences to be 

investigated for the highest energy 
•  No energy dependence of performance 

gain 
•  Extension to (simple version of) CMS geometry 

soon possible 

Andrei Gheata, ACAT 2014 32 

ExN03 example 

Pb Scintillator 
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Part III:  Some details on programming approach
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achieving shared scalar / vector code

1 particle 
API

many 
particle 

API
targeting 

SIMD 
vectorizat

ion

common C++ 
template functions

Vc::double_v distance( Vc::double_v );

double distance( double );
remember...

18
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achieving shared scalar / vector code

1 particle 
API

many 
particle 

API
targeting 

SIMD 
vectorizat

ion

common C++ 
template functions

Vc::double_v distance( Vc::double_v );

double distance( double );

template<class Backend>
Backend::double_t 
common_distance_function( Backend::double_t input )
{
    // complicated code implementing this function
    // using  abstract types that Backend provides
}

remember...
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achieving shared scalar / vector code

1 particle 
API

many 
particle 

API
targeting 

SIMD 
vectorizat

ion

common C++ 
template functions

Vc::double_v distance( Vc::double_v );

double distance( double );

template<class Backend>
Backend::double_t 
common_distance_function( Backend::double_t input )
{
    // complicated code implementing this function
    // using  abstract types that Backend provides
}

struct ScalarBackend
{
    typedef double double_t;
    typedef bool   bool_t;
    static const bool IsScalar=true;
    static const bool IsSIMD=false;
};

struct VectorBackend
{
    typedef Vc::double_v double_t;
    typedef Vc::double_m bool_t;
    static const boolIsScalar=false;
    static const bool IsSIMD=true;
};

attention: this is not valid C++ code; need an additional “typename” before Backend

• “Backend” is a (trait) struct  encapsulating standard types/
properties for “scalar, vector, CUDA” programming; makes 
information injection into template function easy

remember...
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double 
Point::Distance(Vector3D<double> a)
{
  return                                 
   DistanceKernel<ScalarBackend>( a );
}

Vc::double_v 
Point::Distance(Vector3D<Vc::double_v> a)    
{
    return
       DistanceKernel<VectorBackend>( a );
}   

•toy example: calculate distance of particles to a 
Point represented by class Point with members 
(fX,fY,fZ)

•Point class offers 2 “distance” interfaces inlining 
same template function

shared scalar-vector code: example

attention: this is not valid C++ code; need an additional “typename” before Backend

double Distance(Vector3D<double> …)
double_v Distance(Vector3D<double_v> …)

fX, fY, fZ
Point

19
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double 
Point::Distance(Vector3D<double> a)
{
  return                                 
   DistanceKernel<ScalarBackend>( a );
}

Vc::double_v 
Point::Distance(Vector3D<Vc::double_v> a)    
{
    return
       DistanceKernel<VectorBackend>( a );
}   

•toy example: calculate distance of particles to a 
Point represented by class Point with members 
(fX,fY,fZ)

•Point class offers 2 “distance” interfaces inlining 
same template function

shared scalar-vector code: example

attention: this is not valid C++ code; need an additional “typename” before Backend

double Distance(Vector3D<double> …)
double_v Distance(Vector3D<double_v> …)

fX, fY, fZ
Point

template<typename Backend>
inline __attribute__((always_inline))
Backend::double Point::DistanceKernel( Vector3D<Backend::double_t> const & point )
{
  Backend::double_t xp = fX - point.x();
  Backend::double_t yp = fY - point.y();
  Backend::double_t zp = fZ - point.z();
  // might have some Backend specific code
  if( Backend::IsScalar )
  {
      // we are able to diverge the code paths between different backends
  }
  return Sqrt(xp*xp + yp*yp + zp*zp);
}

produces solid SIMD code

19



Sandro Wenzel, ACAT2014

Summary

•  VecGeom is a detector geometry library which:

• is fast

• offers vectorized multi-particle treatment

• follows generic programming approach 
to reduce code size

• (supports CUDA and GPU)

• development model could be extended to other 
components of Geant-V prototype
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Backup
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Shape specialization by example
template<typename TubeType>
class 
SpecTube{
 //  ...
 bool Inside( Vector3D const & ) const;
 //...
};

if statements (“branches”) in generic code can be compiled away

AbstractTube

Inside
SpecTube

 TubeType

template<typename TubeType>
bool SpecTube<TubeType>::Inside( Vector3D const & x) const
{
! // checkContainedZ
! if( std::abs(x.z) > fdZ ) return false;

! // checkContainmentR
! double r2 = x.x*x.x + x.y*x.y;
! if( r2 > fRmaxSqr ) return false;

! if ( TubeType::NeedsRminTreatment )
! {
! ! if( r2 < fRminSqr ) return false;
! }

! if ( TubeType::NeedsPhiTreatment )
! {
! ! // some code
! }
! return true;
}

we can express “static” ifs as 
compile-time if statements 
(e.g. via const properties of 

TubeType)

gets optimized away if a certain 
TubeType does not need this code

compiler creates different binary 
code for different TubeTypes
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