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We share an environment-friendly profession: to produce and share
knowledge, to ask questions and try answering them.

Sometimes, a bright idea gets born, and the burning arrow lightens up the
battleground for years to come

G•osta Gustafson is a happy man whose quiver is packed with such arrows
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The physics of hadrons is our battleground.
It is uneven and muddy and full of perilous traps.
The hadron world is intrinsically complex.In the �rst place because the
hadrons themselves are complex |compositeobjets.

We (or rather our friends experimentalists)observe baryons and mesons, study
the properties of hadrons and their interactions.
At the same time, microscopic dynamics | QCD | applies to invisible
objects | hadron constituents quarks and gluons.

In fact, QCD partons | quarks and gluons | are
not so \invisible".
It su�ces to apply large enough energy to \see" a
quark or a gluon 
ying away from the interaction
point in the form of ajet of hadrons.

Understanding the interface | metamorphosisof
coloured quarks into \white" hadrons | remains
the main, most di�cult, quest and headache.
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What do we know(if anything) about this \metamorphosis"?

At the qualitative level we keep following\the fashion":
the \classical" Kogut{Susskind vacuum breaking picture.

I In a DIS agreenquark in the
proton is hit by a virtual photon

I The quark leaves the stage and the
Colour Field starts building up

I A green{anti-greenquark pair
pops up from the vacuum,
splitting the system into two
globally blanched sub-systems

colour
 field

Vacuum break-up
in the external field

colour
 field

colour
 field

Feynman Hadron Plateau: \one" hadron per unit � !=!
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=) a \String" of hadrons
The core concept of the

Lund Model

The key features of theLund (string) hadronization picture:
I Uniformity in rapidity: dNh = const� d! h=! h
I Limited k? of hadrons
I Quark combinatorics at work:

�
* u, d vs. s
* mesons vs. baryons

The \Lund model" of a Physics School

Carsten Peterson, Bo S•oderberg,
Torbj•orn Sj•ostrand, Gunnar Ingelman, Leif L•onnblad,
Ingemar Holgersson, Olle M•ansson, Bo Nilsson-Almqvist,
Ulf Pettersson, Per Dahlqvist, Hong Pi, Jari H•akkinen,
Hamid Kharraziha, Jim Samuelsson, . . . and many{many others
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Lund String Lund Model

Much more than a mere phenomenological realization
of the Kogut{Susskind scenario

A Semiclassical Model for Quark Jet Fragmentation.
Bo Andersson, G. Gustafson, C. Peterson 1978

* Relativistic string= a �eld \tube" connecting colour charges (quarks)

I Dynamics& Geometry(Wilson law)
I Breakup and Hadrons (Yo-yo mesons)
I Fluctuations (Gluon as akink)

The crucial step:
Stressing the rôle ofcolour topologyin multiple hadroproduction
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Geometry and Colour q�q ! hadrons

Near `perfect' 2-jet event

2 well collimated jets of particles.

HOWEVER :

Transverse momenta increase withQ;

Jets become \fatter" ink?

(though narrower in angle).

Moreover,

In 10% ofe+ e� annihilation
events

| striking 
uctuations !
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Geometry and Colour

Gluon jet
Third jet

By eye, can make out 3-jet structure.

No surprise :(Kogut & Susskind, 1974)

Hard gluon bremsstrahlung o�
the q�q pair may be expectedto
give rise to 3-jet events . . .

The �rst QCD analysis was done by
J.Ellis, M.Gaillard & G.Ross (1976)

I Planar events with largek? ;
I How to measure gluon spin ;
I Gluon jet { softer, more populated.
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Gluon jet
How does gluon hadronize?

QCD possessesN2
c � 1 gauge �elds | vector gluons g.

At large distances, they are supposed to \glue" quarks together.
At small distances(space-time intervals)g is as legitimate a parton asq is.
The �rst indirect evidence in favour ofgluonscame from DIS where it was found
that the electrically charged partons(quarks) carry, on aggregate,less than 50%
of the proton's energy{momentum.

Now, we see a gluon emitted as a \real" particle.
What sort of �nal hadronic state will it produce?

That was the question answered byBo, G•osta and Carsten:
Gluon' quark-antiquark pair:

3 
 �3 = N2
c = 9 ' 8 = N2

c � 1.
Relative mismatch: O(1=N2

c ) � 1 (the large-Nc limit)

Lund modelinterpretation of agluon |

Gluon{ a \ kink" on the \string" (colour tube)
that connects thequarkwith the antiquark
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Now substitute agluonfor the photon in the same
kinematics.
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Collective e�ects
Colour \drag"

Photon

Gluon

Look at hadrons produced in aq�q + photon
e+ e� annihilation event(recall Tornbj•orn's)

The gluon carries \double" colour charge;
quark pair isrepaintedinto octet colour state.

Lund: hadrons = the sum of two independent
(properly boosted)colorless substrings, made of

q + 1
2g and �q + 1

2g .

The �rst immediate consequence:

Double Multiplicity of hadrons
in fragmentation of thegluon
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Look at experimental �ndings

Lessons:
I N increasesfaster than ln E

(=) Feynman was wrong)

I Ng=Nq < 2 however

I dNg
dNq

= Nc
CF

= 2N2
c

N2
c � 1 = 9

4 ' 2
(=) bremsstrahlung gluons
add to the hadron yield; QCD
respecting parton cascades)

Now let's look at a more subtle
consequence ofLund wisdom
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Geometry and Colour

Radiophysics of Colour
intERjet QCD radiation

QCD prediction:

dN(q�q
 )
q�q

dN(q�qg)
q�q

'
2(N2

c � 1)
N2

c � 2
=

16
7

(experiment: 2:3 � 0:2)

Lund: �nal hadrons are given by the sum
of two independent substrings made of

q + 1
2g and �q + 1

2g .

Let's look into theinter-quark valleyand
compare the hadron yield with that in the
q�q 
 event.
The overlay results in a magni�cent
\ String e�ect" | depletion of particle
production in theq�q valley !

Destructive interference
from the QCD point of view

Ratios of hadron 
ows between jets in
various multi-jet processes | example of
non-trivial CIS(collinear-and-infrared-safe)

QCD observable
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String E�ect

Prediction: 1978 (Lund) Measurement:1981 (JADE)
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Radiophysics of Colour
Gluon multiplication

G•osta'sOrigami

I Fractal structureof parton cascades

I Multiplicity anomalous dimension

I Fragmentation functions

A dual description:
radiation of a gluon � dipole ! two dipoles

The base for the AriadneMonte Carlo generator
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Hadron{hadron scattering
gluons in-between-jets

2- and 3-prong colour antennae are sort of \trivial" : coherence being taken
care of, the answers turned out to be essentially additive.

The case of2 ! 2 hard parton scattering is more involved (4 emitters),
especially so forgluon{gluon scattering.

The di�cult quest of sorting out large angle gluon radiationin all orders in
(� s logQ)n was set up and solved by George Sterman and collaborators.

Here one encounters 6 (5 for SU(3)) colour channels that mix with each
other under soft gluon radiation, and the classical pictureof gluon (or
dipole) multiplication is likely to fail.

A recent (2005) addition to the problem (G.Marchesini & YLD)
made one think of ahidden simplicity. . .
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Soft anomalous dimension ,
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@ln Q

M /
�

� Nc ln
� t u

s2

�
� �̂

�
� M ; �̂ Vi = Ei Vi :

6=3+3 . Three eigenvalues are "simple".
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Soft anomalous dimension ,

@
@ln Q

M /
�

� Nc ln
� t u

s2

�
� �̂

�
� M ; �̂ Vi = Ei Vi :

6=3+3 . Three eigenvalues are "simple".
Three "ain't-so-simple" ones were found to satisfy the cubic equation:

�
Ei �

4
3

� 3
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(1 + 3b2)(1 + 3 x2)

3

�
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4
3

�
�

2(1 � 9b2)(1 � 9x2)
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1

Nc
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Hadron{hadron scattering
Puzzleof large angle Soft Gluon radiation

Soft anomalous dimension ,

@
@ln Q

M /
�

� Nc ln
� t u

s2

�
� �̂

�
� M ; �̂ Vi = Ei Vi :

6=3+3 . Three eigenvalues are "simple".
Three "ain't-so-simple" ones were found to satisfy the cubic equation:

�
Ei �

4
3

� 3

�
(1 + 3b2)(1 + 3 x2)

3

�
Ei �

4
3

�
�

2(1 � 9b2)(1 � 9x2)
27

= 0 ;

where

x =
1

Nc
; b �

ln(t =s) � ln(u=s)
ln(t =s) + ln( u=s)

Mark the mysterious symmetryw.r.t. to x ! b: interchanging internal
(group rank) and external(scattering angle)variables of the problem . . .
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High order QCD Dynamics more hints

Some news concerning
apparent complexity/hidden simplicity

of gluon dynamics

... continuing Andrjey's string ofpuzzles

Have a look at thesimplestelement of the parton multiplication
Hamiltonian (non-singlet anomalous dimension)in three loops,� 3

s
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High order QCD Dynamics

3rd loop
3rd loop non-singlet a.d.

P (2)+
ns (x) = 16CACF nf

�
1
6

pqq(x)
�

10
3

� 2 �
209
36

� 9� 3 �
167
18

H0 + 2H0� 2 � 7H0

+3H1;0;0 � H3

�
+

1
3

pqq(� x)
�

3
2

� 3 �
5
3

� 2 � H� 2;0 � 2H� 1� 2 �
10
3

H� 1;0 � H� 1

+2H� 1;2 +
1
2

H0� 2 +
5
3

H0;0 + H0;0;0 � H3

�
+ (1 � x)

�
1
6

� 2 �
257
54

�
43
18

H0 �
1
6

� (1+ x)
�

2
3

H� 1;0 +
1
2

H2

�
+

1
3

� 2 + H0 +
1
6

H0;0 + � (1� x)
�

5
4

�
167
54

� 2 +
1
20

� 2

+16 CACF
2
�

pqq(x)
�

5
6

� 3 �
69
20

� 2
2 � H� 3;0 � 3H� 2� 2 � 14H� 2;� 1;0 + 3H� 2;0 +

� 4H� 2;2 �
151
48

H0 +
41
12

H0� 2 �
17
2

H0� 3 �
13
4

H0;0 � 4H0;0� 2 �
23
12

H0;0;0 + 5H

� 24H1� 3 � 16H1;� 2;0 +
67
9

H1;0 � 2H1;0� 2 +
31
3

H1;0;0 + 11H1;0;0;0 + 8H1;1;0;0
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3rd loop
3rd loop, more

+
67
9

H2 � 2H2� 2 +
11
3

H2;0 + 5H2;0;0 + H3;0

�
+ pqq(� x)

�
1
4

� 2
2 �

67
9

� 2 +
31
4

� 3

� 32H� 2� 2 � 4H� 2;� 1;0 �
31
6

H� 2;0 + 21H� 2;0;0 + 30H� 2;2 �
31
3

H� 1� 2 � 42H

� 4H� 1;� 2;0 + 56H� 1;� 1� 2 � 36H� 1;� 1;0;0 � 56H� 1;� 1;2 �
134
9

H� 1;0 � 42H� 1

+32H� 1;3 �
31
6

H� 1;0;0 + 17H� 1;0;0;0 +
31
3

H� 1;2 + 2H� 1;2;0 +
13
12

H0� 2 +
29
2

H

+13H0;0� 2 +
89
12

H0;0;0 � 5H0;0;0;0 � 7H2� 2 �
31
6

H3 � 10H4

�
+ (1 � x)

�
133
36

+

�
167
4

� 3 � 2H0� 3 � 2H� 3;0 + H� 2� 2 + 2H� 2;� 1;0 � 3H� 2;0;0 +
77
4

H0;0;0 �
209
6

+4H1;0;0 +
14
3

H1;0

�
+ (1+ x)

�
43
2

� 2 � 3� 2
2 +

25
2

H� 2;0 � 31H� 1� 2 � 14H� 1;�

+24H� 1;2 + 23H� 1;0;0 +
55
2

H0� 2 + 5H0;0� 2 +
1457
48

H0 �
1025
36

H0;0 �
155
6

H2 +
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3rd loop
3rd loop, and more

+2H2;0;0 � 3H4

�
� 5� 2 �

1
2

� 2
2 + 50� 3 � 2H� 3;0 � 7H� 2;0 � H0� 3 �

37
2

H0� 2 �

� 2H0;0� 2 +
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6

H0;0 � 22H0;0;0 � 4H0;0;0;0 +
28
3

H2 + 6H3 + � (1� x)
�
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+ �

�
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� 2
2 +
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� 3 +
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2

� 5

��
+ 16 CA

2CF

�
pqq(x)

�
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�
67
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� 2 +
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� 2
2 +

1
2

�

+ H� 3;0 + 4H� 2;� 1;0 �
3
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H� 2;0 � H� 2;0;0 + 2H� 2;2 �
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H0� 2 + 4H0� 3 +
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+
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+ pqq(� x)

�
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� 3 � H� 3;0 + 8H� 2� 2 +
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� 3H� 1;0;0;0 +
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3
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6
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3rd loop
3rd loop, and again

� 3H0;0� 2 �
31
12

H0;0;0 + H0;0;0;0 + 2H2� 2 +
11
6

H3 + 2H4

�
+ (1 � x)

�
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1
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1
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3rd loop
3rd loop, and still some more

�
55
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+
5
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H0 + H0� 2 +
3
2

H0;0 � H0;0;0 �
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3
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3rd loop
3rd loop, and UFF
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High order QCD Dynamics

3rd loop
facing musicof the spheres

2� 2 anomalous dimension matrix occupies

1 st loop: 1/10 page

2 nd loop: 1 page

3 rd loop: 100 pages(200 K asci)

Moch, Vermaseren and Vogt

[ waterfall of results launched
March 2004, and counting ]

V �

(
10

N(N� 1)
2 � 1

102N� 1� 2

not too encouraging a trend . . .



Physics of Glue (27/38)
High order QCD Dynamics

made simple?
Fighting complexity

How to reduce complexity?



Physics of Glue (27/38)
High order QCD Dynamics

made simple?
Fighting complexity

How to reduce complexity ?

Guidelines Higher Orders

Innovative Bookkeeping Think
Extract
Solve



Physics of Glue (27/38)
High order QCD Dynamics

made simple?
Fighting complexity

How to reduce complexity ?

Guidelines
3 exploit internal properties:

I Drell{Levy{Yan relation
I Gribov{Lipatov reciprocity

Higher Orders

Innovative Bookkeeping Think
Extract
Solve



Physics of Glue (27/38)
High order QCD Dynamics

made simple?
Fighting complexity

How to reduce complexity ?

Guidelines
3 exploit internal properties :

I Drell{Levy{Yan relation
I Gribov{Lipatov reciprocity

Higher Orders

Innovative Bookkeeping

Inheritance idea

Think
Extract
Solve



Physics of Glue (27/38)
High order QCD Dynamics

made simple?
Fighting complexity

How to reduce complexity ?

Guidelines
3 exploit internal properties :

I Drell{Levy{Yan relation
I Gribov{Lipatov reciprocity

3 separateclassical & quantum
e�ects in the gluon sector

Higher Orders

Innovative Bookkeeping

Inheritance idea

Think
Extract
Solve



Physics of Glue (27/38)
High order QCD Dynamics

made simple?
Fighting complexity

How to reduce complexity ?

Guidelines
3 exploit internal properties :

I Drell{Levy{Yan relation
I Gribov{Lipatov reciprocity

3 separate classical & quantum
e�ects in the gluon sector

Higher Orders

Innovative Bookkeeping

Inheritance idea

Think
Extract
Solve

An essential partof gluon dynamics isClassical. (F.Low)



Physics of Glue (27/38)
High order QCD Dynamics

made simple?
Fighting complexity

How to reduce complexity ?

Guidelines
3 exploit internal properties :

I Drell{Levy{Yan relation
I Gribov{Lipatov reciprocity

3 separate classical & quantum
e�ects in the gluon sector

Higher Orders

Innovative Bookkeeping

Inheritance idea

Think
Extract
Solve

An essential part of gluon dynamics is Classical. (F.Low)
\ Classical" does not mean \Simple".
However, it has a good chance to be Exactly Solvable.



Physics of Glue (27/38)
High order QCD Dynamics

made simple?
Fighting complexity

How to reduce complexity ?

Guidelines
3 exploit internal properties :

I Drell{Levy{Yan relation
I Gribov{Lipatov reciprocity

3 separate classical & quantum
e�ects in the gluon sector

Higher Orders

Innovative Bookkeeping

Inheritance idea

Think
Extract
Solve

An essential part of gluon dynamics is Classical. (F.Low)
\Classical" does not mean \Simple".
However, it has a good chance to beExactly Solvable.
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Think
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An essential part of gluon dynamics is Classical. (F.Low)
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However, it has a good chance to beExactly Solvable.

å A playing ground for theoretical theory: SUSY, AdS/CFT, . . .
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In the standard approach,

Splitting functions

Anomalous DimensionsEvolution Hamiltonian

k t q ordering

I parton splitting functions are equated with anomalous dimensions;
I they are di�erent for DIS ande+ e� evolution;
I \clever evolution variables" are di�erent too
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Reciprocity Respecting Evolution
checks of new space-time bookkeeping

Maximally super-symmetricN =4 YM allows for a compact analytic
solution of the GLR problem in 3 loops (8N) D-r & Marchesini (2006)

Moreover, the most resent result : inN =4
7 GLR holds for twist 3, in3+4 loops Matteo Beccaria et al.(2007)

What is so special about N =4 SYM ?

This QFT has a good chance to besolvable| \integrable".
Dynamics can be fully integrated if the system possesses a su�cient
(in�nite !) number of conservation laws, | integrals of motion.

Recall an old hint from QCD ...
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Four \parton splitting functions"

q[g]
q (z) ; g[q]
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g (z) ; g[g]

g (z)
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And here we arrive at the second |Divide and Conquer| issue
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�
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Classical and quantum contributions respect the GL relation, individually:

� xf (1=x) = f (x)

Let us look at the rôles these animals play on the QCD stage
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7 Classical Field

3 infrared singular,d!=!

3 de�ne the physical coupling
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å DL radiative e�ects,
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3 play the major rôle in evolution
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3 infrared irrelevant,d! � !

3 make the coupling run

3 responsible for conservation of
å P-parity,

å C-parity,

å colour

�
in

decays,
production

3 minor rôle
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in
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In addition,

7 Tree multi-clagon(Parke{Taylor) amplitudes areknown exactly

7 It is clagonswhich dominate in all theintegrability cases
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I � (� ) � 0 in all orders !

: : : makes one think of aclassical nature(??) of the SYM-4 dynamics
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N = 4 Super{Yang{Mills N=4 SUSY Yang{Mills

Maximally super-symmetric YM �eld model:
Matter content = 4 Majorana fermions, 6 scalars;
everyone in the ajoint representation.
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I � (� ) � 0 in all orders ! =) 
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+ no quagons !

: : : makes one think of aclassical nature(!!! ) of the SYM-4 dynamics
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Serving QCD
N=4 SYM serving QCD
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N = 4 Super{Yang{Mills

Serving QCD
N=4 SYM serving QCD

N =4 SYM has already demonstrated viability of theinheritanceidea.

N =4 SYM dynamics isclassical, in certain sense.

If so, the �nal goal | to derive 
 from 
 (1) , in all orders !

Why bother ?
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N = 4 Super{Yang{Mills

Serving QCD
N=4 SYM serving QCD

N =4 SYM has already demonstrated viability of theinheritanceidea.

N =4 SYM dynamics isclassical, in certain sense.

If so, the �nal goal | to derive 
 from 
 (1) , in all orders !

QCD and SUSY-QCD share the gluon sector.

clever 2nd loop
clever 1st loop

< 2%
�

Heavy quark fragmentation
D-r, Khoze & Troyan , PRD 1996

�
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N = 4 Super{Yang{Mills

Serving QCD
N=4 SYM serving QCD

N =4 SYM has already demonstrated viability of theinheritanceidea.

N =4 SYM dynamics isclassical, in certain sense.

If so, the �nal goal | to derive 
 from 
 (1) , in all orders !

QCD and SUSY-QCDshare the gluon sector.

Clagon(classical) contributions in higher orders show up as speci�c
\ most transcendental" structures (Euler{Zagier harmonic sums� = 2 L� 1).
Importantly, they constitutethe bulk of the QCD anomalous dimension!

Employ N =4 SYM to simplify the major part of theQCD dynamics !
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Conclusions to conclude

I A steady progress in high order perturbative QCDcalculationsis worth
accompanying byre
ections upon the origin and the structure of higher
loop correction e�ects

I Reformulation of parton cascades in terms of Gribov{Lipatov reciprocity
respecting evolution equations (RREE)
I reduces complexity by(at leat) an order of magnitude
I improves perturbative series (less singular, better \convergent")
I links interesting phenomena in the DIS ande+ e� annihilation channels

I The Low theorem should be part of theor.phys. curriculum, worldwide

I Complete solution of theN =4 SYM QFT should provide us with a
one-line-all-ordersdescription of the major part of QCD dynamics

I Physics of Gluewhose exploration was pioneered byG•osta and Bo thirty
years ago remainstoo rich and promising a �eld to retire!
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