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We share an environment-friendly profession: to producd ahare
knowledge, to ask questions and try answering them.

Sometimes, a bright idea gets born, and the burning arrovintens up the
battleground for years to come

Gesta Gustafson is a happy man whose quiver is packed witth surows
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prelude

The physics of hadrons is our battleground.
It is uneven and muddy and full of perilous traps.

The hadron world is intrinsically complexn the rst place because the
hadrons themselves are complex gompositeobjets.

We (or rather our friends experimentalist@bserve baryons and mesons, stuc
the properties of hadrons and their interactions.

At the same time, microscopic dynamics | QCD | applies toinvisible
objects | hadron constituents quarks and gluons.

In fact, QCD partons | quarks and gluons | are
not so \invisiblé.

It su ces to apply large enough energy tose€ a
quark or a gluon ying away from the interaction
point in the form of ajet of hadrons

Understanding the interface | metamorphosi®of
coloured quarks into \white" hadrons | remains
the main, most di cult, quest and headache.
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L Lund sting Jet as a \string" of hadrons

What do we know(if anything) about this\metamorphosis"?

At the qualitative level we keep followinghe fashion™:
the \classical" Kogut{Susskind vacuum breaking picture.

I In a DIS agreenquark in the % (i‘?el?dur
proton is hit by a virtual photon _ Vacuum break-up
~in the external field
I The quark leaves the stage and the
Colour Field starts building up % colour %+ — %4>
I A green{anti-greenquark pair fretd field

pops up from the vacuum,
splitting the system into two
globally blanched sub-systems

Feynman Hadron Platealdlone" hadron per unit  !=!
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L Lund String Colorful Lund wisdon

=) a\String" of hadrons

The core concept of the
Lund Model

The key features of theund (string) hadronization picture

I Uniformity in rapidity: dNp = const d! =l
I Limited k, of hadrons
I Quark combinatorics at work:

u,d vs. s
* mesons vs. baryons

The \Lund modél of a Physics School

Carsten Peterson, Bo Sederberg,

Torbprn Spstrand, Gunnar Ingelman, Leif Lennblad,

Ingemar Holgersson, Olle Mansson, Bo Nilsson-Almqvist,

UIf Pettersson, Per Dahlgvist, Hong Pi, Jari Hakkinen,

Hamid Kharraziha, Jim Samuelsson, ... and many{many others
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I—Lund String Lund MOdel

Much more than a mere phenomenological realization
of the Kogut{Susskind scenario

A Semiclassical Model for Quark Jet Fragmentation
Bo Andersson, G. Gustafson, C. Peterson 1978

*  Relativistic string= a eld \tube" connecting colour charges §uark9

I Dynamics& Geometry(Wilson law)
I Breakup and HadronsYp-yo mesonk
I Fluctuations Gluon as &kink)

The crucial step:
Stressing the réle otolour topologyin multiple hadroproduction
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I—Geometry and Colour

ggq! hadrons

Near “perfect' 2-jet event

2 well collimated jets of particles.

HOWEVER :
Transverse momenta increase wig

Jets become \fatter" inks,
(though narrower in angle)

Moreover,

In 10% ofe* e annihilation
events
| striking uctuations !
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L Third jet

Geometry and Colour
Gluon jet

By eye, can make out 3-jet structure

No surprise :(Kogut & Susskind, 1974)

Hard gluon bremsstrahlung o
the qq pair may be expectedo
give rise to 3-jet events ...

The rst QCD analysis was done by
J.Ellis, M.Gaillard & G.Ross (1976)

I Planar events with largé, ;
I How to measure gluon spin ;
I Gluon jet { softer, more populated.
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L Geometry and Colour How does gluon hadronize

Gluon jet

QCD possessed? 1 gauge elds | vector gluons g.

At large distances, they are supposed to \glue" quarks tdgat

At small distancegspace-time intervalsy is as legitimate a parton ag is.
The rst indirect evidence in favour ofjluonscame from DIS where it was found
that the electrically charged parton&uarks) carry, on aggregateless than 50%
of the proton's energy{momentum.

Now, we see a gluon emitted as a \real" particle.
What sort of nal hadronic state will it produce?
That was the question answered Bo, Gesta and Carsten
Gluon' quark-antiquark pair:

3 3=N2=9 8= N2 1
Relative mismatch ~ O(1=N2) 1 (the largeN. limit)
Lund modelinterpretation of agluon |

Gluon{ a \ kink" on the \string" (colour tube)
that connects thegquarkwith the antiquark
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Collective e ects

Photon -
.

Look at hadrons produced in aq + photon

" e* e annihilation event(recall Tornbprn's)
._;\The hot-dog of hadrons that was dylindric' in
the cms, is nowlopsided [boosted string]
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Geometry and Colour
Collective e ects

Colour \drag"

Photon -~

Look at hadrons produced in @q + photon
e* e annihilation event(recall Tornbprn's)

~———The gluon carries \double" colour charge;

quark pair isrepaintedinto octet colour state.

Lund: hadrons = the sum of two independent
\ (properly boosted)colorless substrings, made of
!_3 q+ g and g+ ig.

The rst immediate consequence

Double Multiplicity of hadrons
in fragmentation of thegluon
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L Geometry and Colour

Collective e ects

Comparing hadron multiplicitie

Nch

L Gluon-Gluon
[— Prediction (Eden et al.)
25 -
r ® CLEO:Y Decays
[ A TRISTAN: 3-Jets
ool 4 OPAL:leading
A OPAL: 3-Jets
r DELPHI: 3-Jetg
151 O sym. evts.
- e allevts.
10 } Quark-Antiquark
L O PETRA ® LEP
L O TRISTAN e PEP
51 ——  Fit (Webber et al.)
L 1 11 11 II 1 1 1 11 1| II
2
10 10
E., MbeVN

Look at experimental ndings

Lessons

I N increasedasterthan InE
(=) Feynman was wrong)

I Ng=Ng < 2 however
| % = N¢ - 2Ng = 9 2
dNg — G- ~ NZ 1~ 4

(=) bremsstrahlung gluons
add to the hadron yield; QCD
respecting parton cascades)

Now let's look at a more subtle
consequence dfund wisdom
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Radiophysics of Colour

2 Lund: nal hadrons are given by the sum
,s’ | of two independent substrings made of
e q+ 39 and g+ 39.
PRI o 4 Let's look into theinter-quark valleyand
R o et's [ inter-qu
v ,ﬂ_" ( compare the hadron yield with that in the
i = \ A\ qq event.
L The overlay results in a magni cent

\ String e ect" | depletion of particle
production in theqq valley !

Destructive interference
from the QCD point of view
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I—Geometry and Colour
Radiophysics of Colour

intERjet QCD radiation

QCD prediction

dN' 2Nz 1) 16
dN(aa9) N2 2 7
qaq

(experiment 2.3  0:2)

Lund: nal hadrons are given by the sum
of two independent substrings made of
q+39 and g+ 39.

Let's look into theinter-quark valleyand
compare the hadron yield with that in the
qq event.

The overlay results in a magni cent

\ String e ect" | depletion of particle
production in theqq valley !

Destructive interference
from the QCD point of view

Ratios of hadron ows between jets in
various multi-jet processes | example of
non-trivial ClS(collinear-and-infrared-safe)

QCD observable
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Radiophysics of Colour

Prediction: 1978 (Lund) Measurement:1981 (JADE)
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L Geometry and Colour Gluon multiplication

Radiophysics of Colour

Gesta's Origami

I Fractal structureof parton cascades
I Multiplicity anomalous dimension

I Fragmentation functions

A dual description
radiation of a gluon dipole! two dipoles

The base for the Ariadne Monte Carlo generator
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I—Geometry and Colour gluons |n-between‘1et‘

Hadron{hadron scattering

2- and 3-prong colour antennae are sort of \trivial*: coherence hgitaken
care of, the answers turned out to be essentially additive.

The case of2! 2 hard parton scattering is more involved gmitters),
especially so fogluon{gluon scattering.

The di cult quest of sorting out large angle gluon radiatiom all orders in
( slogQ)" was set up and solved by George Sterman and collaborators
Here one encounters 6 (for SU(3)) colour channels that mix with each

other under soft gluon radiation, and the classical pictwegluon (or
dipole) multiplication is likely to fail.

A recent(2005) addition to the problem (G.Marchesini & YLD)
made one think of ehidden simplicity. . .
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Soft anomalous dimension ,
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@nQ 2

6=3+3. Three eigenvalues are "simple".
Three "ain't-so-simplé ones were found to satisfy the cubic equation:

M; V= BV
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L Geometry and Colour Puzzleof large angle Soft Gluon radiatic

Hadron{hadron scattering

Soft anomalous dimension ,

tu
@?QM/ Ncln? A VE Vi = BVi:

6=3+3. Three eigenvalues are "simple".
Three "ain't-so-simple" ones were found to satisfy the caldquation:

E 4° (1+3bY)(1+3x} e 42 9M2)(1 X3 _ 0
'3 3 '3 27 -
where
« = 1. In(t=s) In(u=s)
NG In(t=s) + In( u=s)

Mark the mysterious symmetryv.r.t. to x ! b: interchanging internal
(group rank) and external(scattering angle)variables of the problem ...
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I—High order QCD Dynamics more h | ntS

Some news concerning
apparent complexity/hidden simplicity
of gluon dynamics

.. continuing Andrjey's string opuzzles

Have a look at thesimplestelement of the parton multiplication

Hamiltonian (non-singlet anomalous dimensioin three loops, g’



3rd loop non-singlet a.d

Physics of Glue (20/38)
I—High order QCD Dynamics

I—3rd loop

10 209 167
93 —Hp+2Hp 2 7H

1
(2)+ (X) =16 CaACe 1y épqq(x) 32 35 18
10
Ho 2H 12 ?H 10 H

1 257 43

Ho v x) g2 55 g0 |
x) > .67 1
4 54 %7 20

1 5
+3H100 Hz + §pqq( X) 53 32

1 5
+2H 12+ -Ho 2+ SHo0 + Ho00
3y 2 3 3y 1y
:

2 1 1
1+X) SH 10+ 2Hy + = 2+ Ho+ ZHoo+ (1
(1+x) ot sH2 + 502 o+ gHoo (

5 69
+16 CACF? pgq(X) 5% 20 22 Hgo 3H 22 14H 5 10+3H 20
151 41 17 13 23
Ho 2 —Hos —Hoo 4Ho 2 1—2Ho;o;o+5|'

i “THa + —

4H 22 ZgHot 35 2
67 31

24H1 3 16Hp o0+ §H1;o 2H10 2+ §H1;o;o +11H1.0,0,0 + 8H1:1:00
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I_|—||_igh order QCD Dynarmics 3rd |oop, more
3rd loop
67 11 1 67 31
+—Hy 2H, 2+ —Hpo+5Ha00+ Hao + =2 o+ =
g H2 2 2+ Hap 20,0 + H3o + Pggq( X) 22 92t
31 31
32H 22 4H 2: 1.0 EH 2;0+21H 2;0;0+30H 2:2 EH 12 42H
134
4H 1. 20+56H 1. 12 36H 1. 100 56H 1 12 TH 10 42H 4
31 31 13 29
+ . = a0+ ann F — o+ >+ — + ==
32H 13 6H 100 +17H 10,000 3H 12+2H 120 12Ho 2 2"
89 31 133
+13Hp- + —Hao Ha o0 7H —H 1 + (1 —+
3Hop 2 1571000 5Ho:0:0;0 22 Hs OHs +(1 Xx) 36
167 77 20
@ 2Hop 3 2H 30+ H 22+2H 2 1.0 3H 200+ ZHo;o;o 6
14 43 25
+4H1.00+ §H1;o +(1+ x) > 2 3,2+ ?H 20 31H 1, 144
55 1457 1025 155
+ o+ an + — + N o+ . b
24H 12 +23H 100 > Ho 2+5Hop0 2 28 Ho 36 Ho:o 6 H»
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L i acer QcD Dynaic 3rd loop, and more
rd loop
1 37
+2H200 3Hs 52 > 2°+50 3 2H 30 7H 20 Ho 3 7Ho 2
185 28 151
2Hp,0 2+ THO;O 22Hp,0,0 4Ho:0.00 * §H2 +6H3+ (1 X) —-
247 , 211 | 15 245 67 12 , 1
L2y St e 2 +16CA%C + 2524 2
50 2 o3t 55 ACr Pgg(X) —— TR
3 31 389
+ 0+ o e . o0 + . e + +
H 30+4H 2 10 2H 20 H 200+2H 22 12Ho 2+4Hp 3 -
11
Ho0,00 +9H1 3+ 6H1; 20 Hpo 2 ZHl;O;O 3H1.000 4H11;00 + 41
67 , 11 11

11
+1—2H3+ Ha + pgg( X) 182 2 3 H30+8H 22+ fH 2:0

4
11
3H 1,000+ EH 12+12H 13 16H 1; 1 2+8H 1, 1,00+ 16H 1; 1

11 11 3 1
8H 20+11H 102+ —H 100 —H 12 8H 13 -Ho =H 4
2;2 10 2% =M no0 SR 12 13 Mo . gMo 2
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I—High order QCD Dynamics Brd |Oop, and agalr

I—3rd loop

3Ho0 2 %Ho;o;o+ Ho0,00 +2Hz2 2+ 1€1H3+2H4 +(1 x) %883 %
H 2 10t %H 3,0 %H 22+ %H 2,00 * 53—263Ho+ Ho 3 1§3Ho;o gH
2Hy00 +(1+X) 8H 1 2+4H 1; 10+ gH 10 5H 100 6H 12 %
47? 3 gH 2,0 1—21H0 2 %Hz 2 %Ho;o 2+ 7H> i—Lle;o;o"‘3|'|3"'i—g1
+% 2 g 2t 1?7 3t H 20 1;’Ho+ gHo 2 Hos+t %B’Ho;o+ gHO;O;O'
(1 x) %567 22i712+%22+%73 gs +16 Cr 1y %8pqq(x) Ho;
HL X) gat gHo (LX) 1 aoot s +16CN pgg)
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L i acer QcD Dynaic 3rd loop, and still some mor
rd loop
55 5 3 10 10

2
4 THo+ Hp 2+ “Hoo Hooo —Hio —H, 2Hxe 2Hs + =
167 gHo* Ho2* 5Hoo  Hooo 5 Hio —Ha 2,0 3t 3

3 10 5

Z o+ o+ + "+ . ) Z “He.

5 3 H 20+2H 12 3H ot H 100 2H 12 2Ho 2 3Ho,o
10 19 4 2 4 4 25

1 — + —Hp: —H{+ =H{o+ =H>, +(1+ -H 1 —Hg +

(1 x) g T 1goo  3Hi* FHuo* SH> (1+ x) zH 10 5;Ho

7 4 23 5 29 , 17 5
+ Hoo+ —H 1 o~ = 224 = +1 -
gHoo+ 3H2 (1 x) 6 122 3027363 6 Cr° Pqgq(x)

3 3 13
+6H 2 2+12H 2 1,0 6H 200 1_6HO EHO 2+ Ho 3+ §Ho;o 2H¢

+12H; 3+8Hy; 20 6Hyo0 4H1000+4H120 3H20+2H20,0 +4H2:
7 9
+4H3;0+4H3;1+2H4 + pqq( X) E 22 E 3 6H 3;0+32H 2 2+8H y

26H 2:0:0 28H 2;2+6H 1 2+36H 1 3+8H 1. 2.0 48H 11 2+40|
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I—High order QCD Dynamics 3rd |Oop, and U FF

I—3rd loop

+48H 1. 10 +40H 10 2+3H 100 22H 1000 ©6H 12 4H 120 32

3 9
EHO 2 13Hg 3 14Hogo 2 EHo;o;o +6Ho:0.0,0 +6H2 2 +3H3 +2H30-

1
+(1 Xx) 2H 30 %+4H 200+ Hoo 2 3Ho000+35H1 +6H1 o Hy,

37 93 81
+(1+ X) E 22 Z 2 ? 3 15H 2;0+30H 1 2+12H 1. 1.0 2H 1:C
539 191 85
244 1 EHO 28Hg 2 + ?Ho;o*'ZOHo;o;o+ ZHZ 3H200 2H:

67
H4 +4 2+33 3+4H 3;0+1OH 20t 7H0+6Ho 3+19H0 2 25Ho;(

2 1 17
2H2 Hz;o 4H3+ (1 X) g 9 8

92 + 2+ = 24 20 15
3 23t g2t o 2 7 3 5
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2 2 anomalous dimension matrix occupies
1 st loop: 1/10 page
2 ndloop: 1 page
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Moch, Vermaseren and Vogt

[ waterfall of results launched
March 2004, and counting ]
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L-bigh orcer QCD Dynamics facing musiof the spheres

I—3rd loop

2 2 anomalous dimension matrix occupies
1 st loop: 1/10 page
2 ndloop: 1 page
3 rd loop: 100 page$200 K asci)
Moch, Vermaseren and Vogt

[ waterfall of results launched
March 2004, and counting ]

N(N 1)
— 1

10
102N 1 2

not too encouraging a trend ...
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L~tigh order QCD Dynamics Fighting complexity

made simple?

How to reduce complexity

Guidelines [ Higher Orders j

3 exploit internal properties :

' Drel{Levy{Yan relation / \

I Gribov{Lipatov reciprocity
3 separate classical & quantum

Innovative Bookkeeping NNk

: i i Extract
e ects in the gluon sector Inheritance idea Solve
An essential part of gluon dynamics is Classical. (F.Low)

\Classical" does not mean \Simple".
However, it has a good chance to l&actly Solvable

a A playing ground for theoretical theory: SUSY, AdS/CFT, ...
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Evolution Hamiltonian Anomalous Dimensions

k&q ordering

I parton splitting functions are equated with anomalous dinseons;
I they are di erent for DIS ande* e evolution;
I \clever evolution variables" are di erent too
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time ordering
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L innovaiive Bookkeeping checks of new space-time bookkeep

Reciprocity Respecting Evolution

Maximally super-symmetrit\ =4 YM allows for a compact analytic
solution of the GLR problem in 3 loopsi{) D-r & Marchesini (2006)

Moreover, the most resent result : iIN =4
7 GLR holds for twist 3, in3+4 loops Matteo Beccaria et al.(2007)

What is so special about N =4 SYM ?

This QFT has a good chance to solvable| \integrable".
Dynamics can be fully integrated if the system possesses @estl
(in nite ') number of conservation law$ integrals of motion.

Recall an old hint from QCD ...
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L innovaiive Bookkeeping Relating parton splittings

Reciprocity Respecting Evolution

z z
1z 1+ z? 1+ z)?
= C = L
P12 Cr z
Z
z
1+z*+(1 2)*
=Tk 22+ 2)° =N, Pzl 2)

z(1L 2)

Four \parton splitting functions”

g[g](z) : g[Q](Z) : g[CI](Z) : 8[9](2)
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L innovaiive Bookkeeping Relating parton splittings

Reciprocity Respecting Evolution

z 4
1z 1+ 72 1+(1 2)?
= C = - 7
F 1z Cr z
z
4
1+z*+(1 2)*
=T +(1 2)° =N
R z2°+(1 2) c 20 2)
I Exchange the decay productsz.! 1 z
I Exchange the parent and the ospringz! 1=z (GLR)

Three (QED) \kernels" are inter-related gluon self-interactionstays put :

3[9](2) : g[Q](Z) : g[q](Z) 8[9](2)
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L innovaiive Bookkeeping Relating parton splittings

Reciprocity Respecting Evolution

z 4
1z 1+ z? 1+ z)?
= C =C X 7
12 F z
z
4
1+z*+(1 2)*
=Tr 2°+(1 2)° =N
R 2°+(1 2) c 20 2)
I Exchange the decay productsz.! 1 z
I Exchange the parent and the ospringz! 1=z (GLR)
| The story continues, however : |Cg = Tg = N¢ : Super-Symmetry
All four are related ! in nite number of conservation laws !

Wq(Z) = g[g](z) + g[Q](Z) — 8[Q](Z) + 8[9](2) — Wg(Z)
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o from Bookkeeping to Solvin
Reciprocity Respecting Evolution

The integrability feature manifests itself already @ertain sectorsof QCD,
in speci ¢ problems where one cadentify QCD with SUSY-QCD :

. Lipatov
3 the Regge behaviour (larghkc) Faddeev & Korchemsky (1994)
3 barvon wave function Braun, Derkachov, Korchemsky,
y Manashov; Belitsky (1999)
Lipatov (1997)

3 maximal helicity multi-gluon operators Minahan & Zarembo

Beisert & Staudacher (2003)
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The integrability feature manifests itself already @ertain sectorsof QCD,
in speci ¢ problems where one cadentify QCD with SUSY-QCD :

. Lipatov
3 the Regge behaviour (larghkc) Faddeev & Korchemsky (1994)
3 barvon wave function Braun, Derkachov, Korchemsky,
y Manashov; Belitsky (1999)
Lipatov (1997)

3 maximal helicity multi-gluon operators Minahan & Zarembo

Beisert & Staudacher (2003)
The higher the symmetry, the deeper integrabilitfl =4 |

7 Conformal theory (1) O
7 All order expansion for phys

the extreme

Beisert, Eden, Staudacher (2006)

. - . Maldacena; Witten,
7 Full integrability via AdS/CFT Gubser, Klebanov, Polyakov  (1998)

WHY and WHAT FOR ?
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ionovaive Bookkeepig from Bookkeeping to Solvin

Reciprocity Respecting Evolution

The integrability feature manifests itself already @ertain sectorsof QCD,
in speci ¢ problems where one cadentify QCD with SUSY-QCD :

. Lipatov
3 the Regge behaviour (larghkc) Faddeev & Korchemsky (1994)
3 barvon wave function Braun, Derkachov, Korchemsky,
y Manashov; Belitsky (1999)
Lipatov (1997)

3 maximal helicity multi-gluon operators Minahan & Zarembo
Beisert & Staudacher (2003)
The higher the symmetry, the deeper integrabilitd =4 | the extreme:

7 Conformal theory (1) O

7 All order expansion for phys Beisert, Eden, Staudacher (2006)

. - . Maldacena; Witten,
7 Full integrability via AdS/CFT Gubser, Klebanov, Polyakov  (1998)

And here we arrive at the second |Divide and Conquef issue
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Divide and Conquer

o LBK wisdom
Low-Burnett-Kroll wisdom

Recall the diagonal rst loop anomalous dimensions:

CF S X 1
—_— +(1 x) = ;
1 x ( ) 2
Ca X
g g(x)+g T : 1 x +(1 x) x+x?

q! q(x)+g
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I—Dl_ivide and Conquer LB K WlSdom

Low-Burnett-Kroll wisdom

Recall the diagonal rst loop anomalous dimensions:

T qeore T T 7 X+(1 X) 5

CAS X
X

~g! g(x)+g +1 ox) x+x !t

The rst component is independent of the nature of the radiag particle
| the Low{Burnett{Kroll classical radiation =) \clagons.
The second |\ quagons | is relatively suppressed asO (1 x)? .

Classical and quantum contributions respect the GL relatimdividually:
xf(1=x) = f(x)

Let us look at the réles these animals play on the QCD stage
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3 infrared singulard!=!

3 de ne the physical coupling

3 responsible for

DL radiative e ects,
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QCD/Lund string (gluerg
3 play the major r6le in evolution

Qo Qo Qo

7 Quantum d.o.f.s (constituents)
3 infrared irrelevantd! !
3 make the coupling run

3 responsible for conservation of
P-parity,

Qo

° _ decays,
a C-parity, production
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L Divide and Conquer - Gluenatomy
Low-Burnett-Kroll wisdom |
Clagons : Quagons :
7 Classical Field 7 Quantum d.o.f.s (constituents)
3 infrared singulard!=! 3 infrared irrelevantd! |
3 de ne the physical coupling 3 make the coupling run
3 responsible for 3 responsible for conservation of

Qo

DL radiative e ects,

Qo

P-parity,

a reggeization g i in decays,
2 regg ' a  C-parity, production
a QCD/Lund string (gluery & colour

3 play the major r6le in evolution 3 minor role

In addition,

7 Tree multi-clagon (Parke{Taylor) amplitudes areknown exactly
7 It is clagonswhich dominate in all thentegrability cases
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Matter content = 4 Majorana fermions, 6 scalars;
everyone in the ajoint representation.

Z
d (9 *_ 1 ! ) 2
= — Catn Tgr dx2x“+(@1 x)9]
dln2 4 3 0

Now, N =4 SUSY :

y4 y4
Cald (3 ' 11 1

4 2 . 671
a2 4 = §+§ 0dx2[x +(1 x)]+Z 0dx2x(1 X)
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everyone in the ajoint representation.

Z
d (» '_ wu ! 2 2
= — Catn Tgr dx2x“+(@1 x)9]
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Z, Z
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din 2 4 g tp ,ACHA 0T o dx2X(1 X

+ no quagons !

I () Oinallorders! 3 )1

. makes one think of alassical naturg!!!) of the SYM-4 dynamics
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N =4 SYM has already demonstrated viability of theheritanceidea.
N =4 SYM dynamics iglassicaglin certain sense.
If so, the nal goal | to derive  from @ in all orders !

QCD and SUSY-QCD share the gluon sector.

clever 2nd Ioop< % Heavy quark fragmentation
clever 1st loop D-r, Khoze & Troyan , PRD 1996
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I—St—:*rving QCD

N =4 SYM has already demonstrated viability of theheritanceidea.
N =4 SYM dynamics iglassicaglin certain sense.
If so, the nal goal | to derive  from @ in all orders !

QCD and SUSY-QCBhare the gluon sector

Clagon(classical) contributions in higher orders show up as speci
\ most transcendental structures (Euler{Zagier harmonic sums = 2L 1).
Importantly, they constitutethe bulk of the QCD anomalous dimension!

Employ N =4 SYM to simplify the major part of theQCD dynamics !
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L conclusions tO CO n Cl U de

I A steady progress in high order perturbative QCD calculasigs worth
accompanying by re ections upon the origin and the struatuof higher
loop correction e ects

I Reformulation of parton cascades in terms of Gribov{Lipate@ciprocity
respecting evolution equations (RREE)

I reduces complexity byat leat) an order of magnitude
I improves perturbative series (less singular, better \convergent”)
I links interesting phenomena in the DIS amed e annihilation channels

I The Low theorem should be part of theor.phys. curriculum,ridaide

I Complete solution of theN =4 SYM QFT should provide us with a
one-line-all-orderslescription of the major part of QCD dynamics

I Physics of Gluavhose exploration was pioneered Bpsta and Bo thirty
years ago remain00 rich and promising a eld to retine
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L Conclusions The Lund Dipole
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