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• SM Higgs detection? So far no discrepancy: scalar (0+) state at mH = 126
GeV, seems to couple to gauge bosons in the expected way. However, one should
keep an open mind...

1) Mass stabilization (naturalness): Physics at the TeV scale is generally requested
(but so far no signals thereof...), either weakly-coupled (SUSY?...) or
strongly-coupled. Even small deviations from the SM parameters have
profound implications (renormalizability and unitarization). Hints at the UV
completions of the EW theory.

2) Departures from the SM typically expected. Many alternatives to the SM Higgs
in the market (composite Higgs, little Higgs, holographic Higgs, littlest Higgs,
Higgs as a dilaton, etc.), mostly dealing with strongly-coupled scenarios with the
Higgs as a PGB of a general SSB gauge group.

3) Q: Is there a framework that contains all the composite models? Generically, the
interaction is nonrenormalizable and EFTs become an essential tool. What is this
EFT of the electroweak interactions?



General description of the Higgs mechanism

• SSB à la CCWZ: Goldstone bosons from the spontaneous breaking of a
SU(2)L ⊗ SU(2)R global symmetry to SU(2)V (minimal scenario). Goldstone
modes collected in a SU(2) matrix U , transforming as

U → gLUg
†
R, gL,R ∈ SU(2)L,R U = exp(2iϕaτa/v)

• Gauge the SU(2)L ⊗ U(1)Y subgroup: DµU = ∂µU + igWµU − ig′BµU
τ3
2

• Generation of gauge masses transparent in unitary gauge:

LEWSB =
v2

4
tr

[

DµU
†DµU

]

= m2

WW
+

µ W
µ− +m2

ZZµZ
µ

• Equivalent results for the masses: NσM at leading order is equivalent to the LσM
with the scalar integrated out.

• For the Higgs mechanism to work no scalar is requested. But we do have a scalar
in the spectrum...



General description of the Higgs mechanism

• With the discovery of a light scalar, the minimal picture gets generalized to
[Contino et al’12]

LEWSB =
1

2
∂µh∂

µh− V (h) +
v2

4
tr

[

DµU
†DµU

]

×
(

1 + 2a
h

v
+ b

h2

v2
+ · · ·

)

• By construction, the most general parameterization of (leading) scalar effects to
gauge bosons.

• Light scalar as pNGB of unspecified broken symmetry [Georgi,Kaplan’85;Agashe et

al’05].

• h affects (dramatically) the properties of the QFT: renormalizability, etc.
Eventually, it can unveil in which precise way EW symmetry is broken.

• The generic EW theory is no longer renormalizable. If phrased as an EFT,
renormalizability order by order in the expansion parameter. The transition from
naive effective operators to an EFT requires a consistent power-counting.



Some reflections on power-counting

• Weakly-coupled EFTs have dimensional counting (1/Λ2 expansion).
Strongly-coupled expansions have loop counting (v2/Λ2 ∼ 1/(16π2) expansion).

• In some simplified cases the loop expansion can be cast as a dimensional
expansion, e.g. ChPT (expansion in derivatives). Chiral dimension vs canonical
dimension.

• For phenomenological effects, interactions of Goldstones and gauge bosons can
be disguised as dimensional, but at the price of rather exotic chiral dimensions
(couplings scaling as powers of momenta).

• The main goal is to couple also to fermions. There is no chiral dimension that
makes it consistent [Nyffeler et al’99; Hirn et al’03]

• Subsets of operators worked out [Giudice et al’07, Contino et al’12, Alonso et al’12].
Intuition in many cases right, but systematics (and therefore completeness)
lacking.



Organizing the expansion: power-counting

Requirements for a consistent power-counting:

• Homogeneity of the LO Lagrangian. Naive dimensional power-counting only
applies to weakly-coupled (decoupling) scenarios.

• Landau gauge especially suited: ghosts and Goldstones decoupled, i.e. ghosts
decoupled from EWSB dynamics [Appelquist et al’80-81]

• Soft custodial symmetry breaking: Oβ = v2〈τLLµ〉2 subleading
(loop-induced).

Leading order Lagrangian:

LLO = −1

2
〈GµνG

µν〉 − 1

2
〈WµνW

µν〉 − 1

4
BµνB

µν +
∑

j=L,R

ψ̄jiγµD
µψj

+
v2

4
〈LµLµ〉fU(h) − v

[

ψ̄fψ(h)UP±ψ + h.c.
]

+
1

2
∂µh∂

µh− V (h)

fU(h) = 1 +
∑

j

aUj

(

h

v

)j

; fψ(h) = λψ +
∑

j

Aψj

(

h

v

)j



Organizing the expansion: power-counting

LLO = −1

2
〈GµνG

µν〉 − 1

2
〈WµνW
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4
BµνB

µν +
∑

j=L,R

ψ̄jiγµD
µψj

+
v2

4
〈LµLµ〉fU(h) − v

[

ψ̄fψ(h)UP±ψ + h.c.
]

+
1

2
∂µh∂

µh− V (h)

Comments:

• Scalar and fermion-gauge sectors fully general.

• Gauge boson weakly coupled to the strong sector.

• All powers of h contribute at the same order. For phenomenological applications,
fj(h) effectively truncated.

• EFT: expansion in v2/Λ2. Power counting gives a precise definition of NLO
operators.



Organizing the expansion: power-counting

The degree of divergence of every diagram is [Buchalla, O.C.’12;Buchalla, O.C., Krause’13]

∆ = v2(yv)νf (gv)νg(hv)2νh
pd

Λ2L

(

Ψ

v

)F (

Xµν

v

)G
(ϕ

v

)B
(

h

v

)H

where

d = 2L+ 2 − F/2 −G− 2νh − νf − νg

• Bounded from above: number of counterterms finite (consistency check).

• The divergences of the theory should not differentiate between Goldstone bosons
(h or U).

• In the absence of fermions and gauge bosons the power-counting should reduce
to the familiar χPT formula:

∆ = v2
pd

Λ2L

(ϕ

v

)B

, d = 2L+ 2



Organizing the expansion: power-counting



Organizing the expansion: power-counting

O(v2/Λ2) correction: Yukawa2 operator appears at NLO.
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• NLO: 6 classes, denoted as X2U , XUD2, UD4, ψ2UD, ψ2UD2 and ψ4U .
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Operators at NLO

Operator building at every order: assemble building blocks (U, ψ,X and derivatives)
in accordance with the power-counting formula.

• NLO: 6 classes, denoted as X2U , XUD2, UD4, ψ2UD, ψ2UD2 and ψ4U .

OLR8 = l̄γµlēγ
µe OFY 10 = l̄UP−ll̄UP−l



The route to completeness

Avoid missing operators and eliminate redundancies.

• No fail-proof algorithm, but useful tools: E.O.M., Integration by parts, SU(2)
relations, Bianchi identities, ...

• Guiding principles (for us): build the basis with the minimal number of
derivatives. ChPT tradition, also in [Grzadkowski et al’10]

• Redundancies sometimes hard to spot...[Nyffeler et al’99,Grojean et al’06, Buchalla, O.C.’12]

OXU1 = g′gBµν〈W µντL〉 OXU7 = ig′Bµν〈τL[Lµ, Lν ]〉
OXU2 = g2〈W µντL〉2 OXU8 = ig〈Wµν [L

µ, Lν ]〉
OXU3 = gǫµνλρ〈W µνLλ〉〈τLLρ〉 OXU9 = ig〈WµντL〉〈τL[Lµ, Lν ]〉

OXU7 =
g′2

2
BµνB

µν + g′2Oβ1
−OXU1 − g′2OψV 7 − 2g′2OψV 10

OXU8 = g2〈WµνW
µν〉 − g2

2
v2〈LµLµ〉 − OXU1 − 2g2OψV 8 − 2g2OψV 9

OXU9 =
g2

4
〈WµνW

µν〉 − g2

8
v2〈LµLµ〉 −

g2

4
Oβ1

− 1

2
OXU2 −

g2

2
OψV 9



Application I: New physics in f̄f → W+W−

Number of independent EFT operators [Buchalla, O.C. Rahn, Schlaffer’13]:

LNLO =
∑

j

λjOXj +
∑

j

ηjOV j + βOβ + η4fO4f

where Oβ = v2〈τLLµ〉2 and

OX1 = g′gBµν〈W µντL〉 OX4 = g′gǫµνλρ〈τLWµν〉Bλρ

OX2 = g2〈W µντL〉2 OX5 = g2ǫµνλρ〈τLWµν〉〈τLWλρ〉
OX3 = gǫµνλρ〈WµνLλ〉〈τLLρ〉 OX6 = g〈WµνL

µ〉〈τLLν〉
are oblique and triple-gauge corrections (Lµ = iUDµU

†, τL = UT3U
†),

OV 1 = −q̄γµq 〈LµτL〉; OV 7 = −l̄γµl 〈LµτL〉
OV 2 = −q̄γµτLq 〈LµτL〉; OV 8 = −l̄γµτLl 〈LµτL〉
OV 4 = −ūγµu 〈LµτL〉; OV 9 = −l̄γµτ12l 〈Lµτ21〉
OV 5 = −d̄γµd 〈LµτL〉; OV 10 = −ēγµe 〈LµτL〉

are gauge-fermion new physics contributions (τ12,21 = T1 ± iT2) and

O4f =
1

2
(OLL5 − 4OLL15) = (ēLγρµL)(ν̄µγ

ρνe)



Phenomenology at large energies

Main motivation for EFT: large energy gap between the electroweak and new
physics scales. For LHC and linear colliders, aimed energy window:

√
s ∼ (0.6 − 1)

TeV. In this energy regime v2 ≪ s≪ Λ2 and

• Cross sections can be expanded in powers of v2/s;

• Good convergence of the EFT expansion (in s/Λ2) is expected.

For e+e− → W+W− one finds [Buchalla, O.C., Rahn, Schlaffer’13]:

dσRWW

d cos θ
=
πα2 sin2 θ

8s2
W c

2
W

1

m2
W

ηR;
dσLWW

d cos θ
=
πα2 sin2 θ

16c2W s
4
W

1

m2
W

ηL

New physics signals dominated by gauge-fermion operators!...

Two observations to understand the result:

• The dominant piece above comes entirely from W+

LW
−
L polarizations. The result

should be equivalent to e+e− → ϕ+ϕ− in Landau gauge.

ϕ+

ϕ−

γ, Z

e+

e−

e+

e− ϕ+

ϕ−CV

ϕ+

ϕ−

γ, Z

e+

e−

CXU



Application II: New physics in h→ Zℓ+ℓ−

h

Z∗

Z

Γµ

Γ′
µ

ℓ̄(q1)

ℓ(q2)

ℓ̄′(p1)

ℓ′(p2)

s h

γ∗

Z

ieγµ

Γ′
µ

ℓ̄(q1)

ℓ(q2)

ℓ̄′(p1)

ℓ′(p2)

s
h

Z Γ′
µ

ℓ̄(q1)

ℓ(q2)

ℓ̄′(p1)

ℓ′(p2)

• A priori not a promising channel (induced at tree level in the SM).

• However, clean and kinematically rich (4-body decay into lepton pairs).

• Information in the angular distribution complementary to the dilepton mass
distribution [Isidori et al’13,Grinstein et al’13]



Application II: New physics in h→ Zℓ+ℓ−

• Can be seen as a factorized 3-body (h→ Zℓ+ℓ−) times 2-body (Z → ℓ′+ℓ′−)
decay

M3,µ ∼ ū(q2)

[

2F1γµ(GV − GAγ5) +
qµ

M2

h

6k(HV − HAγ5) +
ǫαµβλ

M2

h

pαqβγλ(KV − KAγ5)

]

v(q1)

• Differential decay rate proportional to

J(r, s, α, β, φ) = J1

9

40
(1 + cos2 α cos2 β) + J2

9

16
sin2 α sin2 β + J3 cosα cos β

+ (J4 sinα sin β + J5 sin 2α sin 2β) sinφ

+ (J6 sinα sin β + J7 sin 2α sin 2β) cosφ

+ J8 sin2 α sin2 β sin 2φ+ J9 sin2 α sin2 β cos 2φ

• Collects the contribution to the decay rate, remaining CP even and CP odd
contributions.

• The Ji can be expressed in terms of the EFT coefficients.



Application II: New physics in h→ Zℓ+ℓ−
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• Chosen scenario: we assume main NP contributions coming from the contact
term (heavy 1 TeV vector). Thus, δgV,A negligible (LEP data) and also
δghγ , δghZZ (naive EFT power-counting). Choice of parameters:
(hV , hA) = v2/Λ2(−6, 0.3).

• Asymmetries most sensitive to new physics: double forward-backward Aαβ ∼ J3

and Bφ ∼ J6 (favored by gV being suppressed in the SM).

• Qualitative picture: hV controls asymmetries, hA the differential mass
distribution (uncorrelated effects).



Conclusions and future outlook

• EFT for generic scenarios with pNGB Higgs. Systematics and complete NLO
operators.

• Illustrations: f̄f → WW, γZ,ZZ and h→ Zℓ+ℓ−. Complete EFT treatment
yet still very informative.


