-~ - - — \:“)
- d’-/- : \,_
= L\
- == &
» - : =
- '
: : — T
—_ - ‘
- — — &
— : —= =
— '
i :
’ ' . \

Depositions
N INnvenio 2.0

l

mailto:jiri.kuncar@cern.ch
mailto:lars.holm.nielsen@cern.ch

Zen000

= Search Communities Browse v Upload Getstarted ~ & jiri.kuncar@gmail.com ~

Depositions m—

My uploads

Unsubmitted

New upload

u Instructions: (i) Press "Save” to save your upload for editing later, as many times you like. (i) Upload and remove
> N eW I I I Od l I I e to S l l e rsed e We b l l b I I I It extra files in the bottom of the form. (jii) When ready, press "Submit” to finalize and make your upload public
(editing afterwards only possible via submitting changes to info@zenodo.org)

Type of file(s) ~ required

Invenio Logo just now w

B D & B8 w

Publication Poster Presentation Dataset Image Video/Audio

» Workflows + Forms
> REST API a: o o © o

» Few assumptions: =
» Make easy things easy, and hard —r -
things possible. R
> Not connected to records.

. 23 Choose from Dropbox or Choose files...
Files

Filename Size

© Start upload
=W

invenio.png 16.68 KB

Drag and drop files to upload

 About * Features Powered by: eo @\ %‘
* Contact * FAQ
* Policies * API INVENI/O) OpenAlRE) T ComER T

Terms of use | Privacy policy | Support/Feedback

Deposition technology

Celery

SQLAlchemy

Features

Custom widgets
(upload type/CKEditor)

Auto-complete
(support for multi-field)

Form fields

(combine multiple forms into one
to create structure and hierarchy,
keywords, creators)

Actions
(pre-reserve DOI)

Tags like fields
(grants, communities)

Configurable file upload
(PLUpload with chunking)

> [nstant saving on server
(Pause deposition process and
come back later)

> Hide/show fields
(based on other input field,
e.g. type of files)

INVENI®

Workflow

List of metadata
objects

Deposition

List of files

~/

(586 es

¢ Developer needed S

Worktlow

Deposition type

(e.g. article, preprint,
image, ...)

ZENODO:

everything is one type

Simple case:

run task X1,..., Xn
(branching/merging
also supported)

Example:

1) Render form and
walit for input
2) Upload record

» Basic tasks available,
but needs more

(e.g. approval worflow)

class upload(DepositionType):

workflow = [
Render the form and wait
until it is completed
render form(draft id=' default'),
Create the submission information
package by merging data from all
drafts - i.e. generate the recjson.
prepare_sip(),
Reserve a new record id
create_recid(),
Post process generated recjson
according to needs in ZENODO
process_sip(),
Generate MARC based on recjson
structure
finalize record sip(),
Seal the SIP and write MARCXML file
and call bibupload on it
upload_record_sip(),
Schedule background tasks.
run_tasks(),

]

name = "Upload”

name plural = "Uploads"”

apli = True

draft definitions = {' default': ZenodoForm}

A way to collect and
validate metadata
(deposition has a list
of metadata drafts)

Workflow decides to
render form

Filters, validation, auto
complete, widget,
Processors

Field enclosures

Extended WTForms Form
(to support AJAX
saving etc.)

class ZenodoForm(WebDepositForm):
title = fields.TextField(

)

description=‘Required.’,
default="Untitled",
placeholder="Start typing...",
Process input data (e.g. trim string)
filters=[strip string,],

Validation of data
validators=[validators.required()],

Auto-complete anything
autocomplete=fancy auto complete,

Specify custom widgets
widget=widgets.MyFancyInput,

Use processors to update other fields
after validation

(e.g. fetch DOI information)
processors=| |

Field enclosures: list of
name/affliation dicts
creators = fields.DynamicFieldList (

fields.FormField(CreatorForm))

class CreatorForm(WebDepositForm):

name

= fields.TextField()

affiliation = fields.TextField()

def render form(draft id=' default'):
def render form(obj, eng):
Get an easy interface to
the workflow object
d = Deposition(obj)

» A unit of work # The metadata object:
: draft = d.get or create draft(draft id
» Should be made in S — (1<)

reusable manner if draft.is completed():
Continue to next task
>
Tasks can halt the # 1if the draft is already completed.
workflow eng. jumpCallForward(1l)
else:
Get the form

» Can render anything

they like form = draft.get form(
validate draft=draft.validate)

Tell webdeposit what to render
(L.e. you can render anything
you like - or use the defaults)
.set render context(...)
.update()

0. 0. HFH F* FH

Halt workflow in the current step
eng.halt(
'Wait for form submission. ')
return render form

http://draft.is/

REST AP INVENIQ

» Same code used for validation and > Assumptions:

processing Workflow can run in headless mode
(i.e. your workflow tasks are APl-aware)

List depositions

>>> r = requests.get("https://zenodo.org/api/deposit/depositions")

Create new upload

>>> r = requests.post("https://zenodo.org/api/deposit/depositions?
apikey=YOUR API KEY", data="{}", headers={"Content-Type": "application/json"})

Publish

>>> r = requests.post("https://zenodo.org/api/deposit/depositions/%d/action/
publish?apikey=YOUR API KEY" % deposition id)

Key functionality
delegated to
deposition type,
hence can be
overwritten by you.

—xtending

class upload (DepositionType) :
@classmethod
def render completed(cls, d):
how do I want to
render the completed upload

@ python’

2007
2008
2009
2010
20"
20"
20"

w N =

~/_~

INVENIO)

S AR =i

this 1s next. ..

N I1BM
@er ---- > GroupTalk
anerencing — <
hype N\ R \"\\ L for example
: 2 T
k ‘ Bt ol
. B G Hierarchical
: systems
1
] N
‘ Il : unifie -7

ro example
. '

U
__________) 1
Linked "
t\formauon describes e :
— .:
A : desc ribes in cludes Y
includes

for example
/— 1

C.E.R.N
—\ describes This ,_J\
“Hypertext” document . DD division
|
[

refers MIS OCagr
cl udes A

describes |
¢ wrote

|
RA sectlon

Hypermedia Tlm l gl
Berners-Lee
\/\-/

Jifi Kuncar
lirl.kuncar@cern.ch

Lars Holm Nielsen
lars.holm.nielsen@cern.ch

mailto:jiri.kuncar@cern.ch
mailto:lars.holm.nielsen@cern.ch

