
Manage your Invenio local patches
using guilt

my share of idioms, tricks and lessons learned

Invenio User Group Workshop 2013
Forschungszentrum Jülich

18-20 November 2013

Ferran Jorba
Universitat Autònoma de Barcelona

Ferran.Jorba@uab.cat

The problem to solve
$ make install

[...]
 /bin/mkdir -p '/home/ddd/invenio/etc/build'
 /usr/bin/install -c config.nice '/home/ddd/invenio/etc/build'
for d in / /cache /log /tmp /data /run ; do \
 mkdir -p /home/ddd/invenio/var$d ; \
 done

**
** Invenio software has been successfully installed! **
** **
** You may proceed to customizing your installation now. **
**

Repeat that:
● for each installation (test and production).
● for each new release.

Free software, local patches

● The freedom to study how the program
works, and change it so it does your
computing as you wish (freedom 1). (http:
//www.gnu.org/philosophy/free-sw.html)

● Your local changes are patches. They are
born small, but they grow, and grow.

● Either you educate them since the
beginning, or when they become teenagers,
you are lost.

● Invenio is free software, so better begin now.

http://www.gnu.org/philosophy/free-sw.en.html
http://www.gnu.org/philosophy/free-sw.en.html
http://www.gnu.org/philosophy/free-sw.en.html

Needs and wishlist
● Need to save our customizations, and

replicate them after each new Invenio
release.

● Customizations grow with your site, even if
you are eager to integrate them upstream.

● Easy to understand and use.
● Easy to undo errors.
● Easy to replicate our customizations in all

our instances; industrial-style solution

The birth of our tool:
a stack of patches

2002: Andew Morton patch management
scripts (http://lwn.net/Articles/13518/)

● The key philosophical concept is that your
primary output is patches. [...] So patches
are the first-class object here.

● These scripts are designed for managing a
"stack" of patches. [...] They're pretty fast,
and simple to use.

http://lwn.net/Articles/13518/

A bright idea with many
reimplementations

● 2003: quilt, by Andreas Grünbacher.
● 2005: git, by Linus Torvalds.
Quilt on top of git:
● 2005: stgit, by Catalin Marinas.
● 2006: guilt, by Josef Sipek.
● 2008: topgit, by Petr Baudis.
● [...]
● 2013: git-queue, by Morita Kazutaka.
Similar tools for Mercurial.

Why not just quilt?

● quilt needs to know beforehand which files
you are going to modify, otherwise it just
fails. Not obvious if you use Invenio web
front-end or are a newcomer.

● guilt knows it automatically because git
automatically detects changed files. You
only need to inform about new files (and git
helps you here too with git status).

● All git commands, helpers and tools are
available, if needed (grep, tig, gitk, etc.)

Why not just git?

● Not so easy to undo and redo.
● It covers other needs: software

development, branches, integration…
● Maybe with branches...?
● I feel that it is easier and clearer to use a

different tool designed just for that: my
patches over a third-party software.

● I was used to quilt, and guilt keeps the same
commands and flags (so I could just change
my alias q=quilt to alias q=guilt).

● quilt is already quite a standard (ex. Debian
source format 3.0 (quilt)), so there are
tutorials and a community around.

● It is mature and (actively) maintained.
● After trying the others, I just didn’t like any so

much.
● It works!

Why guilt, and not stgit, topgit, ...?

So, how does guilt handle patches?

● It keeps a linear history of patches.
● A patch is a set of modifications to files.
● You mostly work on your current (top of the

stack) functionality (patch).
● If you mess it up, you undo (pop) it easily.
● When you need to work on something else,

you create a new patch that pushes the
older ones down to the stack (history).

● You can always undo (pop) one or all
patches to go back to your pristine install.

Overview of our magic plan

1. Undo our customizations (patches).
2. Install new Invenio release.
3. Redo our customizations (patches).

install-dir$ guilt pop name-of-your-last-make- install-x.
y.a.patch

install-dir$ guilt push # so it gets applied again

install-dir$ guilt new make-install-x.y.b.patch

build-dir$ make install

install-dir$ guilt refresh

install-dir$ guilt push --all

guilt: first time init
$ cd /your/invenio/install/dir

$ git init # First, init git

$ echo "*~

*.pyc

*.OLD

*.tmp

*.xml

var/" >.gitignore

$ git add -a

$ git commit

$ guilt init # And then, guilt

A common session (I): customize
patch languages box

ddd@test:~/invenio$ guilt new put-languages-at-top.patch # Give a name to
your patch

ddd@test:~/invenio$ git grep languagebox # Use git commands to help you

lib/python/invenio/webstyle_templates.py: %(languagebox)s

lib/python/invenio/webstyle_templates.py: 'languagebox' : self.
tmpl_language_selection_box(req, ln),

ddd@test:~/invenio$ emacs lib/python/invenio/webstyle_templates.py #
Hack, test, hack, test...

ddd@test:~/invenio$ guilt files # see which files are modified by this
patch

lib/python/invenio/webstyle_templates.py

ddd@test:~/invenio$ guilt diff # see what you have modified

ddd@test:~/invenio$ guilt refresh # commit

ddd@test:~/invenio$ guilt pop # undo

Now at use-img-uab-path-for-local-icons.patch.

ddd@test:~/invenio$ guilt push # redo

Applying patch..put-languages-at-top.patch

Patch applied.

A common session (II): create a new
websubmit form

ddd@test:~/invenio$ guilt new create-movies-form.patch # Give a name to
your patch

work with Invenio WebSubmit web interface; clone forms,

edit bibconvert rules, test, etc.

ddd@test:~/invenio$ git status # Use git commands to find which files are
new or modified

On branch invenio-1.1.0

Untracked files:

(use "git add <file>..." to include in what will be committed)

[...]

ddd@test:~/invenio$ guilt add files # add newly created files

ddd@test:~/invenio$ guilt new something-else.patch # add something else

Uncommited changes detected. Refresh first.

ddd@test:~/invenio$ guilt refresh # commit

Patch create-movies-form.patch refreshed

ddd@test:~/invenio$ guilt new something-else.patch

A common session (III): upstream
says: try this patch...

$ cd /tmp/patches

$ wget -O fix-my-bug.patch http://invenio-software.
org/repo/invenio/commit/?id=342b2e667d4…

For each modified file, fix its path so it can be applied to your
installed dir...

$ sed -i s/dist-path.ext/install-path.ext/ fix-my-bug.patch

$ cd /your/invenio/install/dir

$ guilt import /tmp/patches/fix-my-bug.patch

$ guilt push # Try to apply it

$ emacs $(guilt next -p) # Maybe fix some path or else

$ guilt push # Try to apply it again

● If it fixed the problem, it is integrated into your history.
● If it didn't, let's delete it.
$ guilt pop # Undo

$ guit delete -f $(guilt next) # Delete it completely from history

A common session (IV): Send and
apply the top patch to another host

● On test:
ddd@test:~/invenio$ guilt top -p

/home/ddd/invenio/.git/patches/invenio-1.1.0/improve-author-links.patch

ddd@test:~/invenio$ scp $(guilt top -p) ddd@prod:/tmp/patches

ddd@prod's password:

improve-author-links.patch 100% 7976 7.8KB/s 00:00

● On production:
ddd@prod:~/invenio$ guilt import /tmp/patches/improve-author-links.patch

ddd@prod:~/invenio$ guilt push

Applying patch..improve-author-links.patch

Patch applied.

Troubleshooting (I): file does not
exist and --remove not passed

traces@test:~/invenio$ guilt new remove-obsolete-authorities.patch

[Now use web interface to remove two files]

traces@test:~/invenio$ guilt files

etc/bibformat/output_formats/AB.bfo

etc/bibformat/output_formats/AD.bfo

traces@test:~/invenio$ guilt refr --diffstat

error: etc/bibformat/output_formats/AB.bfo:

 does not exist and --remove not passed

fatal: Unable to process path etc/bibformat/output_formats/AB.bfo

error: etc/bibformat/output_formats/AD.bfo:

 does not exist and --remove not passed

fatal: Unable to process path etc/bibformat/output_formats/AD.bfo

Patch remove-obsolete-authorities.patch refreshed

traces@test:~/invenio$ guilt top

remove-obsolete-authorities.patch

traces@test:~/invenio$ guilt pop

Uncommited changes detected. Refresh first.

Troubleshooting (I):
guilt repair --full

traces@test:~/invenio$ guilt repair --full
Checking status file format...ok; no upgrade necessary.

Current HEAD commit be7f2d1bed2d9804ad45b34f61843314ab430d09

New HEAD commit 8c4a32aa80e5ec5b86917e53b637727f29a43ed1

About to forcefully pop all patches...

Are you sure you want to proceed? [y/N] y

Patches should be popped.

Repair complete.

traces@test:~/invenio$ guilt top

traces@test:~/invenio$ guilt push -a
[...]

Applying patch..urlutils.patch

Patch applied.

Applying patch..webinterface_handler_wsgi.patch

Patch applied.

Applying patch..websearch_templates.patch

Patch applied.

[...]

Troubleshooting (II): patch does not
match the current contents

traces@test:~/invenio$ guilt push -a

[...]

Applying patch..bibindex_engine.patch

Patch applied.

Applying patch..webinterface_handler_wsgi.patch

Patch applied.

Applying patch..bfe_areatematica.patch

Patch applied.

Applying patch..remove-obsolete-authorities.patch

error: the patch applies to 'lib/python/invenio/ __init__.pyc'

 (5eddbfa3a8bd0a8799ced228ab6e6dfbba259c10),

 which does not match the current contents.

error: lib/python/invenio/ __init__.pyc: patch does not apply

 To force apply this patch, use 'guilt push -f'

Troubleshooting (II): edit the next
patch to remove an unwanted hunk

traces@test:~/invenio$ guilt pop

Now at improve-author-links.patch

traces@test:~/invenio$ guilt next -p

/home/traces/invenio/.git/patches/invenio-1.1.0/remove-obsolete-
authorities.patch

traces@test:~/invenio$ emacs $(guilt next -p)

diff --git a/lib/python/invenio/ __init__.pyc
b/lib/python/invenio/ __init__.pyc

index ee8a6360c37b9326c93e172c292def235a939b50..
5eddbfa3a8bd0a8799ced228ab6e6dfbba259c10 100644

GIT binary patch

delta 16

Xcmcb@c7=`o;wN4%jmvQx*?pM-IBo^^

delta 16

Xcmcb@c7=`o;wN6NQ?BY8*?pM-ICTZo

[remove those offending lines]

Troubleshooting (III): patch does not
apply

ddd@prod:~/invenio$ guilt import /tmp/patches/use-img-uab-path-for-local-
icons.patch

ddd@prod:~/invenio$ guilt push

Applying patch..use-img-uab-path-for-local-icons.patch

error: patch failed: lib/python/invenio/bibformat_elements/bfe_fulltext.
py:124

error: lib/python/invenio/bibformat_elements/bfe_fulltext.py: patch does
not apply

To force apply this patch, use 'guilt push -f'

ddd@prod:~/invenio$ emacs $(guilt next -p) # edit at will

Lessons learned

● Pathes are done over intalled dir.
○ Otherwise, you don't integrate websubmit & etc.

● Choose a clear name for the first patch after
an Invenio upgrade, like make-install-
1.1.1.patch.
○ This will be the base to apply your patches next

upgrade.
● Sometimes it is necessary to flatten patches.

○ After several months of modifying the same files
here and there, history gets messy.

○ Chances are that after upgrading, patches will fail in
a way difficult to decide the fix.

How to convert your customizations
to patches or flatten history

Ok, say you are convinced. How to start with?

https://github.com/fjorba/localpatches

● It compares your built Invenio with your
current installation, and creates a bunch of
patches, one per file, so they can be saved
and imported to guilt and applied after your
next upgrade.

● It also flattens your guilt(y) history.

https://github.com/fjorba/localpatches
https://github.com/fjorba/localpatches

References, tutorials, etc

● How To Survive With Many Patches, or Introduction to
Quilt: http://www.suse.de/~agruen/quilt.pdf

● Quilt for Debian Maintainers: http://pkg-perl.alioth.
debian.org/howto/quilt.html

● Quilt tutorial: http://www.shakthimaan.
com/downloads/glv/quilt-tutorial/quilt-doc.pdf

● A Guilty Git: http://kernelpanic.blogspot.
com/2007/03/guilty-git.html

http://www.suse.de/~agruen/quilt.pdf
http://pkg-perl.alioth.debian.org/howto/quilt.html
http://pkg-perl.alioth.debian.org/howto/quilt.html
http://pkg-perl.alioth.debian.org/howto/quilt.html
http://www.shakthimaan.com/downloads/glv/quilt-tutorial/quilt-doc.pdf
http://www.shakthimaan.com/downloads/glv/quilt-tutorial/quilt-doc.pdf
http://www.shakthimaan.com/downloads/glv/quilt-tutorial/quilt-doc.pdf
http://kernelpanic.blogspot.com/2007/03/guilty-git.html
http://kernelpanic.blogspot.com/2007/03/guilty-git.html
http://kernelpanic.blogspot.com/2007/03/guilty-git.html

Thank you for your attention

Questions time!

