Exclusive Photoproduction of

<u>p-meson with leading neutron at HERA</u>

Iakov Vazdik 11.09.13

Status report

Some addition to previous talk

Introduction

```
We 'd like to measure process:
Gamma + p --> rho + n + Y,
```

Where Y – small mass.

We can expect two main contribution to this process - 1 – usual proton – dissociative photoproduction

2 - pion exchange process - Y = pi+

We can observe some new feature of proton dissociation and to mesure cross-section of pion – exchange process in some kinematic range.

Introduction

Motivation:

- first observation of photoproduction of on virtual pion
- measurement of t-slope (b $\sim R^2$)
- measurement of P_{T}^{2} of neutron
- possibility of measurement π ⁺ cross-section

Main problem of analysis – relative weight of pion-exchange and p-dissociative ρ^0 photoproduction.

To separate this signals we use 2 sensitive

distributions – Energy of neutron and $P_{_T}^{_2}$ of ρ^0

Pion exchange quasi-elastic

process.

Main competitive processes:

Proton dissociative rho photoproduction process.

(also DD and elastic are considered)

Pion exchange reaction:

 $\gamma + p \rightarrow \rho + n + \pi^+$

we observe:

n ---> from FNC $\rho \rightarrow \pi \pi^{+} \pi^{-}$ in tracking system

 π^+ disappears in the beam pipe

 $<\Theta_{\pi}> \sim 2.6 \text{ mlrd}$ $<E_{\pi}> \sim 282 \text{ GeV}$ Θ_{π} after cuts

E_π

Additional contribution from:

1 - double diffraction (DD) ~ 8.1%

2 – Rho elastic photoproduction (EL) \sim 2.9%

3 – gamma-dissociative photoproduction(GD) $\sim 0.3\%$

We can define relation between this contributions from Sigma-total photoproduction article:

EL:PD:GD:DD = 1 : 0.5 : 1.25 : 1

(PD – proton dissociative photoproduction)

After this we fit Pt**2 distribution of Rho with pion-exchange and with this combination.

We have $\sim 60\%$ of pion + $\sim 40\%$ of this combination We take as background DD + EL + GD + PD-Mx>4 GeV Check structure of background MC minbias 10⁶ events (no any cuts)

Mass n + Y system

8

Efficiency of Mx - pion + pdis

9

For MC we use Pythia for pion-exchange and DIFFVM for all other processes. We have problem with mass distribution. Here it's 4 channel of pt**2 distribution

Fit Mass – Data in different range Pt**2 rho 0-0.025 0.025-0.05 GeV**2 0.05-0.1 0.1-0.15 GeV**2 Dotted line – BW

B – of Ross-S. Distibution from fit of Data

Weight mass

All events after cuts

Mass pi+pi- + background

Background ~ 12%

Pt**2 Data + bkg

Energy of neutron

Trigger efficiency – Monitor st0

Trigger efficiency – Monitor st0

Control plots b-slope = 15 and 20

21

DT - bkg(dbl+pels)

0.31 pion + 0.69 pdis

Part of pion and p-dis

Cross-sec. Pi + Pdis

Cross-sec. With bin corr.

We recalculate cross-sec. Pt**2, Eneutron, Mass

- 1 new b-slope of Pt**2 distribution pdis b=20
- 2 new mass correction
- 3 Background = dbl + pelas + gamma-dis + Pdis (Mx>4 GeV)

Pt**2 distribution – b-slope pdis = 20, pion=4

Chi**2 as function of b-slope - p-dis

Chi**2 as function of b-slope - pion

Cross-sec. for b-slope 15 and 20

B-slope pt**2 rho

E neutron efficiency

Recalculated E neutron distribution Mc – 0.74pion + 0.26 pdis

Efficiency of neutron energy - pion + pdis

Cross-sec. of neutron energy

Mass distribution 0.68pi + 0.32pdis Red – pion Blue - pdis

44

Mass efficiency Red – pion Blue – pdis

Mass cross-sec. Red – pion Blue – pdis

Mass cross-sec. - fit

47

Mass cross-section - old

Efficincy mass

Cross-pi+pdis 0.43 mkb Cros-sc pion 0.22 mkbn (0.3 – 1.5)

To do -

another systematic (energy calibration ...)

Rho 1700 1450 omega

Kinematic range

HISTORY

HERA1 analysis 2006-2008

- data 2000, 9 pb-1
- tagged gamma etag44
- W ~77 GeV ~ 280 ev
- (Pt rho > 0.7 GeV)

HERA2 - 2009 - 2012

- data 06 -07, 1.12 pb-1
- untagged gamma (high presc.)
- W ~ 48 GeV ~ 1200 ev

- (Pt rho > 0.5 GeV)

* Improved FNC * DST3 --> DST7 (improved rec)

Fortran analysis

Standart FNC cuts:

- neutral cluster type 2 and 3
- x and y in the FNC aperture
- energy > 200 GeV

Event selections

Data quality cuts

Data 2006 – 2007 e+ st14 (FTT, CIP, !LAR_IF) Remove FNC and FTT bad runs Lumi = 1.12 pb-1 (averadge prescale – 95)

Tracking cuts

- * Only 2 oppositely charged tracks
- * Primary vertex fitted tracks, dp/p<0.5, pt>0.15 GeV
 * central or combined tracks
- * to increase efficiency:
 - pt_tracks > 0.2 GeV
- θ tracks in the interval $20^{\circ} 160^{\circ}$ degrees * anti ϕ cut Mkk > 1.05 gev
- * E-Pz < 10 GeV (from 2 tracks)
- * | Zvertex | < 30 cm

Trigger efficiency

Background suppresion cuts:

- 1 Only 2 particles in final state:
 - * track cluster matching:
 - $\phi \text{_trk-}\phi \text{_cls}| < 30 \text{ degree}$
 - θ trk- θ cls|<10 degree
 - * no other LAR clusters with energy > 0.4 GeV
 - * LAR_IF< 0.4 GeV (trigger verification)
- 2 Forward detector cuts:
 - * FMD sum of pair hits in 3 first layers < 2
 - * FTS no hits in plane 28 m

Lar - Control plots – pt rho > 0.5 gev


```
Background : (from MC)
Proton – diss – main – 0.7 of background
Double diss. - 0.16
Elastic rho production - 0.12
gamma-diss – 0.02
 - from normalize to lumi
MC – DIFFVM and PYTHIA
(close results)
For signal (pion exchange) – Pythia + Pompyt
Use for background - (p-dis + double + pelas)
```

We have after cuts:

MC pion – 10388 ev

MC p-dis – 1252 ev

MC dbl - 401 ev

MC p-elas- 71 ev

Data - 1211 ev

Lar control plot – pt rho > 0.5 GeV

- fragmentation mode for the state X;
- VDM model parameters;
- pomeron trajectory.

This paper is organized as follows. In section 2 a description of the model is given and section 3 illustrates the program itself. Section 4 contains a control cards example file with the explanation of the meaning of each card and the output plots produced by Diffvm with the entries described in tab.5.

Figure 1: (a): elastic vector meson production, (b): vector meson production with proton dissociation, (c): single diffractive dissociation of the photon, (d): double diffractive dissociation.

FNC - Control plots – pt rho > 0.5 gev

Number of pairs hits in first 3 layers Dashed – pion elas Dotted – p-dis (norm to 1)

Tail in MC after ~ 30 ~ 1% FMD decrease p-dis ~ 30% (FMD reject ~ 39% pion and ~ 56% p-dis)

FNC - Control plots – pt rho > 0.5 gev

FMD - control plots pt rho > 0.5 GeV

FMD – control plots pt rho > 0.5

FTS – control plots

Cross-section

 σ_{f} p) = (Nev-Nbkg)/(Lumi*eff*flux) Lumi = 1.12 pb Flux = 0.1743**Conditions:** * θ neutron < 0.75 mlrd * 20< ₩¥ p)< 100 GeV * energy of neutron = 315 - 875 GeV * 0.6 < mass rho < 1.1 $\langle W(gm-p) \rangle \sim 50 GeV$

Cross-section dSgm/dEn

Dotted line – Pompyt gen norm to data

Old – EL:PD:DD= 1:0.36:0.33 (from normalize to lumi) New – EL:PD:DD = 1:0.53:0.88 (from σ tot - article)

Diffvm VS Pythia (full line - dfvm)

Cross-section $d\sigma/dXl$ nb

Xl = En/Epd\overline{\sigma}/dXl (max) = 182 nb flux pion = 0.385 (tmin=0.085, tmax=0.434) \overline{\sigma}/dXl/flux = 472 nb <\verline{\sigma}/sigma = 26 gev

Pt² - Cross-section – nb/GeV**2

Pt^2 of ρ systematical error

events 300 $Pt^2 of \rho$ Pythia VS Diffym Diffvm VS Pythia o 250 Data - Bkg Number Full line – dfvm 200 Dashed line - ovthia (full line – dfvm) 150 100 50 Data – Background 0 0.3 0,4 0.5 0.6 0.7 0.8 0.9 Pt² GeV² Pt22 DT-Bkg-035=h3504 bpds5.6 pt05 Number of events 9.0 8.0 Pythia less for $\sim 10\%$ Difference relative to dfvm 0.4 0.2 0

0.3

0.4

0.5

0.6

Pt22 dt-bkg-dfvm/dt-bkg-pyt pt05

0.7

0.8

0.9

Pt² GeV²

Pt^2 of ρ Psystematical error

B-slope p-dis =
$$5.6 \pm 0.8$$

(ZEUS data)
error $\pm 5\%$ and $\pm 8\%$

Pt² distribution of neutron

Cross-section pt^2 of neutron nb/GeV^2

Slope – $b=16.29 \pm 0.54$

Systematics

Main value : lumi ~ 5% Trigg eff – 5% background ~ 10 % vary b-slope of $pt^2 \pm 1 \sim 8\%$ Energy scale FNC $\pm 2\%$ (~ up to 30% in Energy Crs-sec in some bins)