Jets @ high Q² Status report

Daniel Britzger

H1 Collaboration Meeting, September 2013 Liverpool, 11 September 2013

Jet production in ep scattering

Breit frame of reference

 $2x_{\rm Bj}p + k = 0$

• Only hard QCD processes generate considerable $p_{\rm T}$ in the Breit frame

Jet production in DIS in leading-order

QCD compton

QCD compton

Boson - gluon fusion Boson - gluon fusion

Jet cross section calculable in pQCD

$$\sigma_{\text{jet}} = \sum_{n} \sum_{a=q,\bar{q},g} \left[\sigma_{n,a} \otimes f_a \right] \left(1 + \delta_{\text{had}} \right)$$

- Expansion in orders of $\alpha_s(\mu_r)$ with $n \ge 1$
- Hadronization effects with correction factor
- Coefficients available up to next-to-leading order

Jet production directly sensitive to α_s

Phase space of measurement

Measurement phase spa	ace (MPS)	Extended phase space (EPS)				
Neutral curren	t phase space	Neutral current phase space				
$150 < Q^2 <$	15000 GeV ²	$100 < Q^2 < 40000 \text{ GeV}^2$				
0.2 <	<i>y</i> < 0.7	0.08 < <i>y</i> < 1.0				
Jet acce	eptance	Jet acceptance				
-1.0 < r	n _{lab} < 2.5	-1.5 < η_{i}	_{lab} < 2.75			
Inclusi	ve Jet	Inclusive Jet				
$7 < p_{T}^{jet}$.	< 50 GeV	p_{T}^{jet} >	3 GeV			
Dijet (n _{jet} ≥2)	Trijet (n _{jet} ≥3)	Dijet (n _{iet} ≥2) Trijet (n _{i∉}				
$5 < p_T^{jet}$	< 50 GeV	$3 < p_T^{jet} < 50 \text{ GeV}$				
M ₁₂ >	M_{12} > 16 GeV					
$7 < \langle p_{\rm T} angle_2 < 50~{ m GeV}$	$7 < \langle p_{\rm T} angle_3 < 30 { m ~GeV}$	$3 < \langle p_{\rm T} \rangle_2 < 50 { m ~GeV}$	$3 < \langle p_{\rm T} angle_3 < 30 { m ~GeV}$			
$0.006 < \xi_2 < 0.316$	$0.01 < \xi_3 < 0.50$	0.0 < ξ ₂ < 1.0	0.0 < ξ ₃ < 1.0			
Phase space of f	inal data points	Extended phase	e phase used only			

for migrations in unfolding

Schematic definition of migration matrix

Simultaneous unfolding

NC DIS, inclusive jet, dijet and trijet

Covariance matrix V_y

takes statistical correlations of observables into account

Individual unfolding schemes

- E, J₁, J₂, J₃ studied in detail
- Are optimized separately using MC

Matrices **B**_i

Constrain reconstructed but not generated contributions

Two MC generators

Django and Rapgap

Phase space is enlarged

in all variables where migrations are relevant

T<mark>ri</mark>jet J3 <D_T>2, V Trijet-cuts eve Dijet E_{J2} Q^2 , $\langle p_T \rangle_2$, V **Dijet-cuts** Generator Incl. Jet **E**. p_T, Q², y, η ε_E Reconstructed Reconstructed Reconstructed NC DIS -β, jets without match Dijet events which Triet events which are not generated are not generated to generator level Q^2 , v as Dijet event as Trijet event **Detector level** 4-dimensional Up to 7 observables are considered to unfolding in p_T , Q^2 , y, η discribe migrations

Problem with uncertainties after unfolding

Systematic uncertainties

Alternative unfolding matrix is determined for every source of systematic uncertainty

- Jet energy scale (JES)
- Remaining cluster energy scale (RCES)
- Electron angle (E_{θ})
- Electron energy (E_e)

Uncertainty is propagated analytically

 using linear error propagation formulae to generator level distribution

Uncertainties show large fluctuations (O(%))

Unclear

Caused by

- limited data statistics?
- limited MC statistics? -> New MC production

Impact on fit

- Does fluctuation 'mimic' statistical fluctuation
 - -> Causing large nuisacne parameters

New Monte Carlo production

New Rapgap and Django MC

Huge statistics

- 40 fb⁻¹ of MC data for every generator
- New controlplots very well consistent with old ones

Two Sim/Rec files corrupt

 Therefore today only: 'almost-almost-closetovery-finalfinal2_4' cross sections

Hardly any effect on cross sections or uncertainties

Comparison to old MCs (T=10⁻⁶)

H1 - HERA-II Sys. Uncertainty H1 - HERA-II Sys. Uncertainty **MSTW 2008 MSTW 2008** Dijet Trijet Trijet Inclusive Jet Inclusive Jet Dijet 150 < Q² < 200 GeV $150 < Q^2 < 200 \text{ GeV}^2$ 1.2 0.8 0.8 0.6 0.6 $200 < Q^2 < 270 \text{ GeV}^2$ 200 < Q² < 270 GeV² 1.2 1.2 0.8 0.8 0.6 270 < Q² < 400 GeV² $270 < Q^2 < 400 \text{ GeV}^2$ 1.2 1.2 0.8 400 < Q² < 700 GeV² 400 < Q² < 700 GeV² • $700 < Q^2 < 5000 \text{ GeV}^2$ 700 < Q² < 5000 GeV² 1.2 1.2 0.8 0.8 0.6 0.6 5000 <₁Q² < 15000 GeV² , 5000 < Q² < 15000 G**e**∀ 1.2 1.2 0.8 0.8 0.6 0.6 78910 30 40 78910 30 40 20 30 40 20 20 78910 20 30 78910 20 30 40 78910 78910 20 30 $\left< p_{T} \right>_{3}$ [GeV] $\langle p_{T}^{} \rangle_{3}^{}$ [GeV] p_{τ}^{jet} $\langle p_T \rangle_2$ $p_{\rm T}^{\text{jet}}$ $\langle p_{T} \rangle_{2}$

Overall picture does not change

Using 'old MC'

Using 'old+new MC'

7

Comparison of uncertainties

Using 'old MC'

Using 'old+new MC'

Model uncertainty

Using 'old MC'

Some bins have quite different model uncertainties, but also large fluctuations/asymmetries

Conclusion on uncertainties

Using 'old MC'

Using 'old+new MC'

Results

Size of systematic uncertainies does not change

'Fluctuations' are still present

Quite consistent results (even for some 'fluctuations')

Low-statistics bins (e.g. high-Q², high pT bins) have slight changes

Open questions

Do we trust these uncertainties ?

What is the potential impact on the fit?

Careful smoothing of uncertainties (by hand!)

Previously used 'smoothing' algorithm

- 1. Unfold data (with Dj+Rg) $\delta_{Data(Dj+Rg)}$
- 2. Unfold Django-pseudo-data with Rapgap
 - reduced dependence on limited data statistics
- 3. Unfold Rapgap-pseudo-data with Django

4.
$$\delta\sigma = \frac{\delta\sigma_{Data(Dj+Rg)} + \delta\sigma_{Dj(Rg)} + \delta\sigma_{Rg(Dj)}}{3}$$

Only small effect on 'fluctuations'

Now:

CAREFUL(!) smoothing of uncertainties by hand

- e.g. average uncertainty in bins of similar phase space
- Consider Q^2 and p_T dependence of uncertainties
 - \bullet JES and RCES should have small dependence in Q^2
 - Electron uncertainties should hardly differ between different jet $p_{\rm T}$ bins
- Consider also uncertaities if bin-by-bin method would be used

2 х 3 маснт 4 -

WIDDEWIDDEWITT UND 3 MACHT 9E ! Ich mach' mir die Fehler -WIDDEWIDDE WIE SIE MIR GEFALLEN ...

Impact on alpha_s

Unsmoothed data set

Inclusive Jet 0.1175 +/- 0.0022 (exp) @ chi2/ndf = 1.342

Dijet

0.1136 +/- 0.0023 (exp) @ chi2/ndf = 1.261

Trijet

0.1168 +/- 0.0019 (exp) @ chi2/ndf = 1.002

Multijet

0.1179 + -0.0017 (exp) @ chi2/ndf = 1.251 eps(HFS) = 0.202 + -0.627 eps(JES) = 0.422 + -0.603 eps(LArNoise) = 0.292 + -0.933eps(Norm) = 1.531 + -0.759 Smoothed data set

Inclusive Jet 0.1176 +/- 0.0022 (exp) @ chi2/ndf = 1.408

Dijet 0.1137 +/- 0.0024 (exp) @ chi2/ndf = 1.396

Trijet 0.1165 +/- 0.0019 (exp) @ chi2/ndf = 1.347

Multijet

0.1182 + - 0.0018 (exp) @ chi2/ndf = 1.400 eps(HFS) = 0.326 + - 0.876 eps(JES) = 0.677 + - 0.739 eps(LArNoise) = 0.347 + - 0.977eps(Norm) = 1.517 + - 0.779

- 'Smoothing' has no significant influence on fit

- Large nuisance parameters are not caused by 'fluctuations of system. uncertainties'

- Results change more significantly if uncertainies are treated as 'fully correlated' (backup)

Study: Include systematic uncertainties in Unfolding Covariance matrix (based on old MC)

Regularized unfolding using Tunfold

• Find hadron level x by analytic minimization of χ^2

$$\chi^2(x,\tau) = (y - Ax)^T V_y^{-1}(y - Ax) + \tau^2 (x - x_0)^T (L^T L)(x - x_0)$$

Include Systematic uncertainty in

V: V-> V_{stat} + V_{sys}

- Only JES and RCES (the largest systematic uncertainties) (technical limitations)
- Correlated, uncorrelated, 50:50, ...

Systematic uncertainty will be included in Covariance matrix of result

Cannot be disentangled from statistical uncertainty

Systematic uncertainties in unfolding

	Referenz	JES and RCES in V	JES and RCES in V	JES and RCES in V
Uncertainty treatment		Correlated	Uncorrelated	half correlated, half uncorrelated
tau	10 ⁻⁶	10 ⁻⁶	10 ⁻⁶	10 ⁻⁶
Chi2a in unfolding	3306.7	3219.8	2685.35	2388.76

Update 11. 09. 13: WARNING !!! Systematic uncerainty was added <u>twice</u> in unfolding (once for up/down variation) This gives an increased uncertainty of 1.4142...

If there is a visible effect, this should be even increased !!!

Systematic uncertainties in unfolding

Reference

JES and RCES as correlated

Systematic uncertainties in unfolding

Reference

JES and RCES as uncorrelated

Effect in α_s -fit

	Sys in α _s -fit uncorrelated	Sys in α _s -fit (50:50)	Sys in α _s -fit correlated (rel.)	Sys in α _s -fit correlated (<mark>abs.)</mark>
Inclusive Jet	0.1168 +/- 0.0021 chi2/ndf = 1.372	0.1176 +/- 0.0022 chi2/ndf = 1.386	0.1180 +/- 0.0022 chi2/ndf = 1.475	0.1178 +/- 0.0023 chi2/ndf = 1.529
Dijet	0.1135 +/- 0.0022 chi2/ndf = 1.260		0.1134 +/- 0.0023 chi2/ndf = 1.500	0.1129 +/- 0.0024 chi2/ndf = 1.462
Trijet	0.1171 +/- 0.0016 chi2/ndf = 0.748	0.1176 +/- 0.0017 chi2/ndf = 0.797	0.1179 +/- 0.0018 chi2/ndf = 0.878	0.1180 +/- 0.0020 chi2/ndf = 0.892
Multijet	0.1181 +/- 0.0016 chi2/ndf = 1.179	0.1184 +/- 0.0017 chi2/ndf = 1.290	0.1186 +/- 0.0017 chi2/ndf = 1.454	0.1177 +/- 0.0019 chi2/ndf = 1.457
Multijet Norm	0.1165 +/- 0.0006 chi2/ndf = 1.519	0.1165 +/- 0.0007 chi2/ndf = 1.614	0.1166 +/- 0.0007 chi2/ndf = 1.738	0.1164 +/- 0.0007 chi2/ndf = 1.731
	Sys in Unfolding V Uncorrelated	Sys in Unfolding V (50:50)	Sys in Unfolding V Correlated	
Inclusive Jet	Sys in Unfolding V Uncorrelated 0.1168 +/- 0.0021 chi2/ndf = 1.447	Sys in Unfolding V (50:50) 0.1180 +/- 0.0021 chi2/ndf = 1.429	Sys in Unfolding V Correlated 0.1183 +/- 0.0020 chi2/ndf = 1.509	
Inclusive Jet Dijet	Sys in Unfolding V Uncorrelated 0.1168 +/- 0.0021 chi2/ndf = 1.447 0.1137 +/- 0.0022 chi2/ndf = 1.218	Sys in Unfolding V (50:50) 0.1180 +/- 0.0021 chi2/ndf = 1.429 0.1148 +/- 0.0022 chi2/ndf = 1.455	Sys in Unfolding V Correlated 0.1183 +/- 0.0020 chi2/ndf = 1.509 0.1151 +/- 0.0022 chi2/ndf = 1.677	
Inclusive Jet Dijet Trijet	Sys in Unfolding V Uncorrelated 0.1168 +/- 0.0021 chi2/ndf = 1.447 0.1137 +/- 0.0022 chi2/ndf = 1.218 0.1167 +/- 0.0016 chi2/ndf = 0.860	Sys in Unfolding V (50:50) 0.1180 +/- 0.0021 chi2/ndf = 1.429 0.1148 +/- 0.0022 chi2/ndf = 1.455 0.1178 +/- 0.0015 chi2/ndf = 0.870	Sys in Unfolding V Correlated 0.1183 +/- 0.0020 chi2/ndf = 1.509 0.1151 +/- 0.0022 chi2/ndf = 1.677 0.1182 +/- 0.0015 chi2/ndf = 0.878	
Inclusive Jet Dijet Trijet Multijet	Sys in Unfolding V Uncorrelated 0.1168 +/- 0.0021 chi2/ndf = 1.447 0.1137 +/- 0.0022 chi2/ndf = 1.218 0.1167 +/- 0.0016 chi2/ndf = 0.860 0.1177 +/- 0.0015 chi2/ndf = 1.222	Sys in Unfolding V (50:50) 0.1180 +/- 0.0021 chi2/ndf = 1.429 0.1148 +/- 0.0022 chi2/ndf = 1.455 0.1178 +/- 0.0015 chi2/ndf = 0.870 0.1188 +/- 0.0015 chi2/ndf = 1.347	Sys in Unfolding V Correlated 0.1183 +/- 0.0020 chi2/ndf = 1.509 0.1151 +/- 0.0022 chi2/ndf = 1.677 0.1182 +/- 0.0015 chi2/ndf = 0.878 0.1194 +/- 0.0014 chi2/ndf = 1.483	

For JES/RCES 50:50 was commonly used: No significant difference there Inclusion of sys. uncertainties in unfolding is an equally valid approach

Summary

Status

- Reason for fluctuations in systematic uncertainty remains unclear
 - It is not MC statistics, not Data statistics ...
- Fluctuations of sys. uncertainties do not have bad influence on fit results
 - Some smoothing may be reasonable, but not too much
- Systematic uncertainties can also be included in covariance matrix, which enters unfolding
 - Systematic uncertainties cannot be disentangled after unfolding from statistical uncertainties
 - No visibly preferred effect on cross sections
 - Treatment seems to be equally valid, as using systematic uncertainties in a similar way in α_s -fit
 - Uncertainties on α_s may come out to be slightly smaller

Plans

- As soon as remaining new MCs are sim-rec'd and oo'd, data will be unfold'd, cross-section'd and fitt'd
 - Final cross sections
- Final fits are also ahead
- Writing paper
- T0 planned on 17. October (optimistic, but possible)

Correction of detector effects using regularized unfolding

Detector effects

- Acceptance and efficiency
- Migrations due to limited resolution

Aim

- Cross section on hadron level
- Direct matrix inversion of A often not possible

Detector response

$$y = A \cdot x$$

- Measured vector y
- Hadron level vector \boldsymbol{x}
- Detector response matrix A
- Covariance matrix V_y

Regularized unfolding using Tunfold (JINST 7 (2012) T10003)

• Find hadron level x by analytic minimization of χ^2

$$\chi^2(x,\tau) = (y - Ax)^T V_y^{-1}(y - Ax) + \tau^2 (x - x_0)^T (L^T L)(x - x_0)$$

Regularization: χ^2_L

- Find stationary point ($\partial \chi^2 / \partial x = 0$) by solving analytically as function of x
- 'True' hadron level can be determined directly

$$x = (A^T V_y^{-1} A + \tau^2 L^2)^{-1} A^T V_y^{-1} y =: By$$

Matrix inversion: χ^2_A

• τ (and L) are free parameters

Correlation matrix

Covariance matrix

Obtained through linear error propagation of statistical uncertainties

Correlations

- Resulting from unfolding
- Physical correlations
 - Between measurements
 - Within inclusive jet

Useful for

- Cross section ratios
- Combined fits
- Normalized cross sections

Correlation Matrix

Correlation matrix is employed for correct error propagation for norm. cross sections

All sys. uncertainties fully correlated (model 50%:50%)

Fit_SysCorrMod05_MC13prel2/log.1.txt:446:xxac	alpha_s	= (0.1181 +/-	0.0022	(exp)	@	chi2/ndf =	1.539
<pre>Fit_SysCorrMod05_MC13prel2/log.123.txt:651:xxa</pre>	c alpha_s	:	= 0.1189 +/	- 0.001	7 (exp)	@	chi2/ndf	= 1.534
Fit_SysCorrMod05_MC13prel2/log.2.txt:446:xxac	alpha_s	= (0.1146 +/-	0.0024	(exp)	@	chi2/ndf =	1.528
Fit_SysCorrMod05_MC13prel2/log.3.txt:434:xxac	alpha_s	= (0.1174 +/-	0.0022	(exp)	@	chi2/ndf =	1.275

Fit_SysCorrMod05_MC13pre12/log.123.txt:638:xxe-					
<pre>Fit_SysCorrMod05_MC13prel2/log.123.txt:639:xxe</pre>	eps(HFS) =	0.230	+/- 0.537	Corr to	as: 0.515
<pre>Fit_SysCorrMod05_MC13prel2/log.123.txt:640:xxe</pre>	eps(JES) =	0.387	+/- 0.456	Corr to	as: 0.264
<pre>Fit_SysCorrMod05_MC13prel2/log.123.txt:641:xxe</pre>	eps(LArNoise) =		0.534 +/- 0.9	92	Corr to as: 0.172
<pre>Fit_SysCorrMod05_MC13prel2/log.123.txt:642:xxe</pre>	eps(Ee) =	1.408	+/- 0.435	Corr to	as: 0.029
<pre>Fit_SysCorrMod05_MC13prel2/log.123.txt:643:xxe</pre>	eps(The) =	0.228	+/- 0.940	Corr to	as: -0.106
<pre>Fit_SysCorrMod05_MC13prel2/log.123.txt:644:xxe</pre>	eps(IDe) =	1.375	+/- 0.891	Corr to	as: 0.020
<pre>Fit_SysCorrMod05_MC13prel2/log.123.txt:645:xxe</pre>	eps(Norm) =	1.790	+/- 0.735	Corr to	as: 0.755
<pre>Fit_SysCorrMod05_MC13prel2/log.123.txt:648:xxe</pre>	eps(Model) =	-0.027	+/- 0.421	Corr to	as: 0.116

Fit_SysCorrMod05	_MC13prel2SmoothHand/log.1.txt:446:xxac	alpha_s	= 0.119	1 +/- 0.0023	(exp)	@	chi2/ndf =	1.531
Fit_SysCorrMod05	_MC13prel2SmoothHand/log.123.txt:651:xxa	c alpha_s	= 0.12	201 +/- 0.00	19 (exp)	@	chi2/ndf =	= 1.653
Fit_SysCorrMod05	_MC13prel2SmoothHand/log.2.txt:446:xxac	alpha_s	= 0.1149	9 +/- 0.0026	(exp)	@	chi2/ndf =	1.672
Fit_SysCorrMod05	_MC13prel2SmoothHand/log.3.txt:434:xxac	alpha_s	= 0.116	5 +/- 0.0021	(exp)	@	chi2/ndf =	1.496

<pre>Fit_SysCorrMod05_MC13prel2SmoothHand/log.123.txt:638:xxe-</pre>			
<pre>Fit_SysCorrMod05_MC13prel2SmoothHand/log.123.txt:639:xxe</pre>	eps(HFS) = 0.76	59 +/- 0.799	Corr to as: 0.671
<pre>Fit_SysCorrMod05_MC13prel2SmoothHand/log.123.txt:640:xxe</pre>	eps(JES) = 0.58	87 +/- 0.627	Corr to as: 0.383
<pre>Fit_SysCorrMod05_MC13prel2SmoothHand/log.123.txt:641:xxe</pre>	eps(LArNoise) =	0.622 +/- 0.9	991 Corr to as: 0.142
<pre>Fit_SysCorrMod05_MC13prel2SmoothHand/log.123.txt:642:xxe</pre>	eps(Ee) = 0.13	86 +/- 0.996	Corr to as: 0.061
<pre>Fit_SysCorrMod05_MC13prel2SmoothHand/log.123.txt:643:xxe</pre>	eps(The) = 0.18	32 +/- 0.991	Corr to as: 0.089
Fit_SysCorrMod05_MC13prel2SmoothHand/log.123.txt:644:xxe	eps(IDe) = 1.29	92 +/- 0.901	Corr to as: 0.010
Fit_SysCorrMod05_MC13prel2SmoothHand/log.123.txt:645:xxe	eps(Norm) = 1.59	95 +/- 0.773	Corr to as: 0.666
Fit_SysCorrMod05_MC13prel2SmoothHand/log.123.txt:648:xxe	eps(Model) = 0.64	12 +/- 0.543	Corr to as: 0.041