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QCD Instantons
& HERA

Instantons
● Solution to Yang-Mills equation of motion in 4d Euclidean spacetime as a 

longrange fields A
μ
 with finite action S( A

μ 
) < ∞

● Physical interpretations: pseudo-particle or tunneling process between 
topologicaly different vacuum states 

● Lead to violations of baryon-lepton number (in EW) and chirality (QCD)

● Non-perturbative effect with cross section ~e-4π/α (α-coupling constant) 

Time Space
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QCD Instantons
& HERA

QCD Instantons

● Instanton-induced events produced in 
quark-gluon fusion

● Theory and phenomenology worked 
out by A. Ringwald and F. Schremp

● QCDIns Monte Carlo generator 
makes full event topology available
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Analysis strategy 
I. DIS Selection

II. Jet level
● Jet selection: kT algorithm 
● HCMS: find current jet (E

t
Jet, Q'2

Rec
) 

and remove its objects from HFS.
Current jet requirements:

● Maximal E
t
 and E

t 
> 4GeV

●  Calculate <η> of HFS and define 
„instanton band” as objects within 
<η> +/- 1.1 

  

E
t
Jet

Q'2
Rec
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Analysis strategy 
I. DIS Selection

II. Jet level 

III. Instanton level
● Boost HFS objects from „instanton band” to 

„instanton rest frame” 
q'+ξP  = 0 , ξ = <ξ> = 0.076

●   Calculate observables
● Transverse energy of the band Et

band

● N
chr

 – number of charged particles in band
● Topological observables: Sphericity, Fox-

Wolfram moments, E
In

, E
out 

, Δ
band 

Instanton 
band



7

Observables for TMVA

A set of five observables 
selected:

Good S/B separation and 
relativly good 

discriminator's background 
region description

Methods used: PDERS, 
MLP, BDT and BDTG
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TMVA: Results from PDERS method
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Upper limits

QCDInstanton cross section in the analysis phase space is: 10 +/- 2 pb

  
For upper limit calculation a CL

S 
method has been used 

In the CLS method distributions of some variable are used – information from bins is 
combined into test statistics X:

where n
i
 is the number of D/B/S events in the i-bin, w

i
 – weights that are calculated from 

a set of linear equations and constructed in such a way that bins with large amount of 
signal get high (positive) weights 
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Test statistic distribution
Lets construct test statistics for Data, Background and Backgr+Signal
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Upper limit scan 
Upper limit for 95% confidence level is found by scanning and looking for such a point 

in which 1-CL
S
= 0.05  

Red points – a quick algorithm results  (100k pseudo-exp per point)
Green points – a scan with 2M pseudo-exp per point
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Upper limits: previous results

CL observed and expected vs the 
Instanton Cross Section
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Upper limits: issues

Model uncertainty: difference between background MCs

Uknown errors correlations between bins

Suggestion: vary parameters of the number of charged 
particles reweighting function

(new source of systematic error: FitPar)
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FitPar impact on PDERS 
Orange bands represent all systematics for 

djangoh 
except FitPar model uncertainty 
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FitPar impact on PDERS 

Orange bands represent all 
systematics for djangoh 

with FitPar model uncertainty 
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FitPar impact on upper limits
Number of bins scan 

Full range distributions were 
used to obtain results 

presented here
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Upper limits: one more issue

Number of tracks reweighting function parameters: are 
they correlated?

Correlation matrix from fit procedure: some off-diagonal 
elements close to 1

Files with new variations not yet finished
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Summary

Variations of the reweighting function parameters results in 
huge errors

Upper limits calculations are stable for higher number of 
bins for all methods used 

Presented results suggest exclusion of the instanton cross 
section predicted by Ringwald-Schremmp 

(QCDINS MC generator)
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Thank you for your attention
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Backup



21

FitPar impact on MLP 

Orange bands represent all 
systematics for djangoh 

with FitPar model uncertainty 
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FitPar impact on BDTG  

Orange bands represent all 
systematics for djangoh 

with FitPar model uncertainty 
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FitPar impact on BDT  

Orange bands represent all 
systematics for djangoh 

with FitPar model uncertainty 
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Event Selection

Kinematics:

eΣ method

150 <  Q2  < 15000 GeV  

0.2 < y < 0.7

Electron Variables
E

 e
 > 11 GeV

-190 cm < Z
imp

 < 15 cm && Z
 imp 

> 25

2° < φ mod [45°] < 43°

 

Technical Cuts & Background
Fiducial Cuts, 

Trigger 67

45 GeV < E- P
z
 < 65 GeV

|Z
vrtx

| < 35 cm

Optimal Vertex with no CIP-only vertice

Track-cluster distance  8cm

Background Finders

DIS selection

In such region
QCD Instanton cross 

section reduced:
σ ≈ 10pb 
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Jet & Track Selections

Jet Selection

Inclusive kT algorithm in HCMS frame

Pt > 3 GeV

R = 1.35*0.5

(corresponds to R
cone

 = 0.5 )

Jets boosted to LAB:

Pt
Jet

 > 2.5

-1 < η
jet

 < 2.5

 

Track Selection

Pt > 0.12

20º < θ

from Primary Vertex

|DCA| < 2 cm

R
length

 > 10 cm (for θ < 150º)

R
length

 > 5 cm (for θ < 150º)

must be a Central Track
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Currently used reweights:

Taken from HighQ2 Jets Analysis (Roman) and added on top of it 

- Gen level: jet multiplicity, jet eta, jet Pt, E-pz of the HFS, MC cross section, jet eta in 
one-jet and coplanarity of one-jet events + number of tracks 

- Rec level: veto inefficiency, trigger (E
e
<13GeV), track-cluster link effic. with a 8cm cut

Lumi absolute normalisation after reweights was off for Rapgap (~1%) and Djangoh 
(~10%). Luminosities used: L

DATA
 = 357.6,  L

Rapgap
 = 9133.8, L

Djangoh
 = 10488.15 [pb-1]

Expected Instanton signal in Data is ~0.8% 

Current Status
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Linear Correlation Matrices
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Base set – shape norm.
 

BDT
BDTG

PDERS
MLP
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Multi Variate Analysis 

 One can compare signal and 
background efficiencies with Separation 
Power defined as a ratio of efficiencies  

 Standard approach uses Significance   
Where to cut on discriminator?

'Reminder': PDERS discriminator

Smaller 
binning

Previous HaQ:

SepPow=
Sig Eff
Bkg Eff

Significance= S
√S+B

PDERS cut value PDERS cut value
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Multi Variate Analysis 

One can use a method (based on Stefan Schmitt's idea) that estimates an 
error of signal cross section: 

 

 

Where to cut on discriminator?

err (σ sig)=
√N bckg+Δmodel

2

ϵ∗Ldata
√N Bckg

cut ∗N Sig
total

N Sig
cut∗Ldata

PDERS cut value PDERS cut value

Fitted functions' (polynomial) minimums: 
minimum in x= 0.889 minimum in x= 0.876

Djangoh Rapgap

A cut value used so far was 0.9 and the 
same for all sets&MCs. 



31

Charged particles mutliplicty reweighting 

Procedure:
Take number of tracks 

distributions on Jet level (N
ch

Rec)

Fit polynomial function f
i
 to 

Data/MC
i
 ratio

Calculate new weights using 
f

i
(N

ch
Gen)

N
ch

Gen - number of stable, chraged 
particles from GTR bank

Mean values 
differ by ~0.2

Shape 
difference:  

N ch
Gen

N ch
Rec
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Control plots on DIS level
 (Roman+N

trk
)+Yes rew. 

With the reweight on YeΣ both Monte Carlos have a very good data description – Yes 
'slope' in Rapgap fixed 
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Control plots on Instanton level
 (Roman+N

trk
)+Yes rew. 

Absolute normalisation moved down by ~1-2% with respect to DIS level but data description
 is still very good 
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