CHARM & BEAUTY WITH ELECTRONS

Martin Brinkmann, Karin Daum

MOTIVATION - AIM OF THIS ANALYSIS

We have an excellent e/π discriminator
 π-suppression by a factor 300!
 large leptonic branching fractions for c/b high statistics

ranalysis orthogonal to other

measurements to profit from combination

MOTIVATION - F2^{CC} AND F2^{BB}

currently 20-30% error 10% from b→e feasible

METHOD

Analysis is based on semi-electronic decays of heavy flavoured hadrons Orthogonality w.r.t. other analyses constrains the choice of observables $\Rightarrow pT^{rel}$ of electron

- ⇒ missing momentum from neutrino
- \Rightarrow jet mass, multiplicity.....

needs good modelling of DIS, HFS, Jets

Everything marked in red in this talk are modifications w.r.t. Martin's analysis

HI00 4.0.25

DATA SAMPLES AND SELECTION

2005-2007 *L*=301 pb⁻¹

Triggers: ST6, ST67

DIS phase space:

 $5 < Q^2 < 2000 \text{ GeV}^2$, $0.02 < y_{e\Sigma} < 0.7$

Electron selection:

SpaCal: same as D^* @ low Q^2 LAr: same as D^* @ high Q^2

HFS:

iterative calibration correction of hadronic energy in SpaCal (1.25 for data, 1.5 for MC) as used for F_L^D $35GeV < E-P_Z < 70 \text{ GeV}$ lets:

k_T algorithm, γp frame, R=1.5 (from Susanne Hellwig's diploma thesis) P_T*>1.5 GeV

Soft electron candidates: $0.7 < P_T < 25$ GeV, $|\eta| < 1.3$ Vetos: $\pi \rightarrow ee\gamma$, $\gamma \rightarrow ee$, QEDC contained in the leading or nextto-leading jet (γp) Electron discriminator output: signal region: >0.9 background region: 0.75-0.9 (variable lower limit for systematics)

MONTE CARLO SAMPLES

light flavours	RAPGAP 8773-8784, 8849-8860
	400,000,000 events $\mathcal{L}=1,459 \text{ pb}^{-1}$
charm	RAPGAP 8785-8790
	120,000,000 events $\mathcal{L}=2,853 \text{ pb}^{-1}$
beauty	RAPGAP 8750-8753
	20,000,000 events $\mathcal{L}=27,504 \text{ pb}^{-1}$
Diffraction uds	RAPGAP 7222
	6,000,000 events $\mathcal{L}=261 \text{ pb}^{-1}$
Diffraction charm	RAPGAP 7223
	1,200,000 events $\mathcal{L}=286 \text{ pb}^{-1}$
Inelastic J/ψ	CASCADE 8836
	1,000,000 events $\mathcal{L}=32,407 \text{ pb}^{-1}$

HEAVY FLAVOUR RE-WEIGHTING IN MC

Charm fragmentation (as measured by HI)

Electron decay spectrum (as measured by CLEO)

M.Brimkman PAF 22.01.13 20.02.13

Re-weighting applied for $D \rightarrow evX$ (gen, rec) (how to treat misidentified hadrons from decays unclear)

Reasonable agreement (data vs. MC)observed for $B \rightarrow evX$ (Belle) and fragmentation \Rightarrow no

re-weights applied (check again!)

Re-weighting applied for $D \rightarrow evX$ (gen, rec) and to all hadrons misidentified as electrons from decay or string (rec)

ANALYSIS STEPS - CHECKLIST

Lumi Inclusive DIS **Inclusive** Jets **Inclusive HFS** (1) Soft electron discriminator electron efficiency pion suppression (K^{0}_{s}) proton suppression (Λ) Fraction fits Efficiencies Trigger efficiency Reconstruction effciency (1) **Radiative Corrections** Systematic uncertainties **NLO** Predictions

= checked/added - red = changes or new - thin = not done yet

INCLUSIVE SAMPLE

 \mathbb{C} MC needs to be re-weighted in Z_{vtx} and y (to start with)

INCLUSIVE HFS AND JETS

MC needs to be re-weighted in PT(max)(Jet) (to start with)

↓±10%

INCLUSIVE SAMPLE (RE-WEIGHTED)

After Z_{vtx} correction and two iteration of re-weighting of y_{GKI} and P_T^* of leading jet on hadron level:

 $y_{e\Sigma}$ and Q_e^2 improved but E-P_Z far from optimal (may be critical since good understanding of HFS in mandatory for this analysis)

 $\pm 10\%$

INCLUSIVE HFS AND JETS (RE-WEIGHTED)

After Z_{vtx} correction and re-weighting iteratively in **Y**_{GKI} (2x) and **P**_T^{*} of leading jet on hadron level (3x) \rightarrow significant improvement of Θ_{track} and P_T^{*} of leading jet

 $\pm 10\%$

SOFT ELECTRON DISCRIMINATOR

The responds of the discriminator to particles in data and MC may differ \rightarrow has been checked / calibrated (iterative correction procedure)

electron efficiency using photon conversions hadron misidentification using K^0_s for pions and Λ for protons

II-E DISCRIMINATOR EFFICIENCY FOR ELECTRONS

After calibration efficiencies for data and MC agree within 2% Similar results are obtained for the p-e discriminator

MISIDENTIFICATION OF PIONS

After calibration discriminator response for pions for data and MC agree within statistical uncertainties Pion misidentification probability is 0.0028(0.0036) for $\pi^-(\pi^+)$

VARIABLES DISCRIMINATING UDS, C AND B

Only variables that have not sensitive to the re-weights can be used for discriminating uds, charm and beauty: - PT^{rel}

- soft electron discriminator output (D_{ele})
- angle in r- ϕ between P_T^{miss} and soft electron ($\Delta \phi$)
- jet mass (m_{jet})

TEMPLATE FITS

Templates: uds, charm($c \rightarrow e$, fakes), beauty($b \rightarrow e$, $b \rightarrow c \rightarrow e$, fakes) Use TUNFOLD

Main variable: P_T^{rel} measured in 4 regions:

- (1) $0.825(0.75) < D_{ele} < 0.9$ (for hadrons set to $-P_T^{rel}$)
- (2) $D_{ele} \ge 0.9$, $\Delta \phi < \pi/2$, $m_{jet} < 3.5$ GeV (charm enhanced)
- (3) $D_{ele} \ge 0.9$, $\Delta \phi > \pi/2$, $m_{jet} < 3.5$ GeV (uds enhanced, +3)
- (4) D_{ele}≥0.9, 3.5<m_{jet}<10 GeV (beauty enhanced, +6)

FIT FOR VISIBLE PHASE SPACE

flavour type	frac. before fit	frac. after fit
uds	0.165	0.409 +/- 0.003
СС	0.791	0.521 +/- 0.005
bb	0.044	0.071 +/- 0.002

NDF = 33
$$y^2$$
 = 43.4

±5%

CONTROL DISTRIBUTIONS - I-EVENTS

CONTROL DISTRIBUTIONS - II-JETS

CONTROL DISTRIBUTIONS - III-HFS

 $\mathbf{P}_{\mathsf{T}}^{\mathsf{miss}}$

сс

bb

9 10 ptMiss

uds

000

25000

20000

15000

10000

5000

0

data

 $\Delta \varphi$ (e, P_T^{miss}) n_{ch}(P_T<0.2GeV) er&ries uds сс data bb # 20000 15000 10000 5000

40

0

20

60

bb

20

chMult200

CONTROL DISTRIBUTIONS - IV-ELECTRON

EFFICIENCIES & RADIATIVE CORRECTION

Similar efficiencies for electrons from charm and beauty (\approx 25%) Similar radiative corrections which are small (check α_{em})

HVQDIS

Decays to electrons implemented in HVQDIS:

 $D \rightarrow evX$: using electron decay spectrum extracted from CLEO measurement Branching fraction: $c \rightarrow evX=0.098$

Beauty:

 $B \rightarrow evX$: using electron decay spectrum extracted from Belle measurement

 $B \rightarrow DX$: decay spectrum from MC and $D \rightarrow evX$ as for charm from CLEO

 $B \rightarrow \tau v \times \rightarrow e v v v \times :$ not implemented yet

 $B \rightarrow J/\psi \times \rightarrow ee \times :$ not implemented yet

Branching fraction: $b \rightarrow ev X = 0.2238$ including corrections for $\tau v X$ and J/ ψX and for getting two electrons from the same b-quark

CROSS SECTION - VERY FIRST LOOK

Visible phase space: 5 GeV² < Q² < 2000 GeV², 0.02 < y < 0.7

 $0.7 \text{ GeV} < P_T^e < 25 \text{ GeV}, -1.3 < \eta_e < 1.3$

	Charm	Beauty
Data	5 ± 0 pb	147.4±4.3 pb
Rapgap CTEQ6L	1268 pb	95 pb
HVQDIS CTEQ5F3 mlow	1176 pb (m _c =1.35)	105 pb (m _b =4.50)
HVQDIS CTEQ5F3 mhigh	965 pb (m _c =1.35)	79 pb (m _b =5.00)

Statistical errors only

Charm cross section stable against variations: O(2%) Beauty cross section is 1.5x larger than HVQDIS and Rapgap

CHARM CROSS SECTION VS. RAPGAP

Statistical errors only Reasonable agreement between data and Rapgap

Wednesday, 11 September 2013

LAST PLOTS FROM MARTIN VS CURRENT STATUS

CHARM CROSS SECTION VS. HVQDIS

Statistical errors only - band on HVQDIS: m_c variation Reasonable agreement between data and HVQDIS

BEAUTY CROSS SECTION VS. RAPGAP

Statistical errors only

Reasonable agreement between data and Rapgap for Q²>20 GeV2 Significant deviations at small Q², P_T and forward η Don't forget: This is the first shot

BEAUTY CROSS SECTION VS. HVQDIS

Statistical errors only - band on HVQDIS: m_b variation Same features w.r.t. HVQDIS observed than for Rapgap

BEAUTY - A CLOSER LOOK

charm is not able to accommodate for the excess observed at large values of m_{jet} and P_T^{rel} - needs more investigations

BEAUTY CROSS SECTION IN ZEUS PHASE SPACE

Visible phase space: $Q^2 > 10 \text{ GeV}^2$, 0.05 < y < 0.7 0.9 GeV < PT e <8 GeV, -1.5 < η_e <1.5

	b→evX
ZEUS	71.8±5.5 _{stat} (+5.3/-5.5) _{sys} pb
this analysis	86.4±3.3 pb

CONCLUSIONS

- Analysis of c/b→electrons continues most of the steps checked
 Studies of inclusive DIS and inclusive jets in DIS showed the need for re-weighting MC in y and P_{T,max}^{jet}
- Significant improvement in describing the soft electron sample after applying re-weights deduced from the inclusive samples
- •Better understanding of the HFS still needed
- Many issues presented last time are solved
- Additional observables with c/b discriminating power found (next step: multivariate analysis)
- c→eX and b→eX implemented in HVQDIS (needs to be refined)
 First look on cross sections revealed a reasonable description of the charm data but beauty turns out to be about 50% above the predictions from Rapgap and HVQDIS (need to be investigated)

BACKUP

CHARM & BEAUTY WITH ELECTRONS

Martin Brinkmann, Karin Daum

This is all based on Martin's code

MotivationLast stage of Martin's analysisCurrent status

MOTIVATION - AIM OF THIS ANALYSIS

We have an excellent e/π discriminator
 π-suppression by a factor 300!
 large leptonic branching fractions for c/b
 keep analysis orthogonal to other
 measurements to profit from combination

METHOD & COMPLICATIONS

Orthogonality w.r.t. other analyses constrains the choice of observables $\Rightarrow pT^{rel}$

Many observables discriminating between beauty and charm are not well described (Martin tried many - only p_T^{rel} seems reasonable)

Example from D*s: shat

MORE COMPLICATIONS

Need a good understanding of the π /e discriminator Need also an understood proton/electron disciminator Need to reweight c-fragmentation Need to reweight electron decay spectrum

....

LAST PLOTS FROM MARTIN

Measured cross section: significantly below MC (opposite to D* and LT) step in cross section at low pt opposite behaviour for beauty strange result from fraction fit at low pt (fit instable?) reason was not found

SINCE THEN

efficiency determination:

fragmentation and decay spectrum reweight was applied on detector level only

after correction: cross section increased but low pt problem remains

DISCRIMINATOR RESPONSE - PIONS FROM K⁰

Differences visible $\approx 10^{-4}$! - corrections applied independently in θ and p (correlations!) **change to:** θ and p_T (iterative) and improve K⁰(Λ) selection (LT)

DISCRIMINATOR RESPONSE - PIONS FROM K⁰

Better agreement between data and MC - no correlations with θ ,pT

FRACTION FITTING

old style (fit result)

new style (not fitted)

old fractions: hadrons+conv- $\gamma/c \rightarrow e/b \rightarrow e$ new fractions: uds,c and b

FURTHER CHANGES

- •Implementation of HIBoostedJets corrected (pT^{Jet}-cut was not correctly defined - recovered losses)
- currently p_T^{rel} calculated including the electron candidate (improves stability of fits)
- fragmentation reweight also applied to hadrons (would also need reweight of decay spectrum but how???)
- signal calculation after fraction fit corrected (was very background region dependent - now very stable except at low pt)

Somewhat better behaviour at small pt

STILL QUITE SOME OPEN PROBLEMS

Many changes implemented including some fixes
Signal extraction not stable yet: still some dependance on background region (mainly in pt)

• Still problems with efficiency calculation: fitted fractions and observed event rates smaller than predicted but calculated charm cross section larger than in MC

CONCLUSIONS

Analysis of c/b→electrons continues
Some improvements implemented solving some issues
Behaviour of proton-electron discriminator has to be checked
Efficiency issue has to be understood
Inclusion of additional observables c/b discriminating power will be studied

JUST AN APPETISER

Wednesday, 11 September 2013