MPGD 2013 2013/07/1-4

1

Development of a GEM-TPC for H-dibaryon Search Experiment at J-PARC

Hiroyuki Sako (JAEA) for J-PARC E42/E45 Collaboration

<u>Outline</u>

- Introduction
- HypTPC design
- Prototype tests
- •Summary

Search for H-dibaryon

Most stable and compact 6-quark state (uuddss)

Lattice-QCD calculations Binding energy:-13 ~ +7 MeV H may be slightly bound or unbound

Experimental search

- Peaks observed
- by KEK-E224, E522

around $\Lambda\Lambda$ mass threshold

- Indication of H?
- Statistics not enough

High statistics experiment at J-PARC

KEK-E224

2

Required performance of HypTPC

- Maximize acceptance for H decay event
 - Target inside TPC
 - Inject 10⁶ cps/cm² K⁻ beams directly into drift volume
 - →Strong suppression of positive-ion feedback required GEM
 - Gating grid
- High position resolutions
 - 1-2 MeV/c² $\Lambda\Lambda$ invariant mass resolutions
 - \rightarrow 300 μ m position resolutions
 - →Dipole magnetic field (~1T) parallel to the drift field Small pad size (a few mm)

- Octagonal prism shape field cage 576(\$) x550(h)
- Cylindrical target holder with field strips
- P-10 (Ar-CH₄(90:10))
- Vertical magnetic and drift
- Gating grid + GEM + pad plane in the bottom
- **Gating grid wires**

H-dibaryon decay event

Top view of TPC

GEM configuration

•4 GEMs (277x277mm²)

•3-layer GEM (50µm+50µm+100µm)

Electrode division

- •12.5 mm width (20 div.) 1 sheet
- •41mm width (6 div.) 3 sheets
- Suppress discharge rate
- Minimize acceptance reduction in case an electrode is broken ⁷

GEM

Pad configuration

Inner planes (rings)
 2.1~2.7x9mm²

#plane=10

• Outer planes (rings)

2.3~2.4x12.5mm²

#plane=22

Total #pad 5768

Average charge sharing ~ 2 mode (hit

~ 3 pads / hit

Horizontal position resolution at B=1T < 300µm

Pad plane

Pad plane (back side)

TPC prototype

Small TPC

- 100mmx100mm GEM
- 200mm drift length
- Gating grid wires
- 3-layer GEM
- Readout pads (4mmx10mm)
- Gas

P-10

Pad size 4mm x 10mm

Source tests in Lab

GEM gain

High rate beam test at RCNP(Nov 2011)

400 MeV proton beam with 10³-10⁷ cps / cm²

- Measure hit position shifts
 - Silicon Strip Detectors as track
 position reference

Results

Test with UV laser with B-field (J-PARC, Apr 2013)

Laser optics

- YAG laser 266nm
- Energy 0-15mJ/pulse, 10Hz

Horizontal resolutions with B-field

- Resolutions improve by 40-50% B=0 \rightarrow 0.7 T
 - Resolutions are 60% smaller
 than expected for MIP
 may be due to higher energy
 deposit (no. of electrons)

Summary

- We have been developing HypTPC for J-PARC E42
 - High rate operation:
 - GEM and gating grid wires
 - Large H decay event acceptance:
 - A cylindrical target holder inside TPC drift volume
- Tests of a prototpe TPC successful
 - Low ion-feedback and good efficiency at beam rate of 10⁶ cps/cm²
 - GEMs worked stably for 1 month
- Resolutions improved by 40% at 0.7 T in the laser test

Prospects

Sep 2013-	Test of TPC2 (final TPC)
	GEM gain and stability against discharge
Nov 2013	Field cage and target holder
Apr 2014-	Full system tests with electronics (GET)
Dec 2014	Goal completion

Theoretical and Experimental Re view on H-dibaryon Search

Proposal for the H-dibaryon Se arch at J-PARC

The E42 Collaboration

J.K. Ahn (spokesperson), S.H. Hwang, S.H. Kim, S.J. Kim, S.Y. Kim, H.S. Lee*, A. Ni, J.Y. Park, S.Y. Ryu Pusan National University, Korea

S. Hasegawa, R. Honda, Y. Ichikawa, K. Imai (co-spokesperson), H. Sako, S. Sato, K. Shirotori, H. Sugimura Japan Atomic Energy Agency (JAEA), Japan

> H. Fujioka, M. Niiyama Kyoto University, Japan

R. Kiuchi, K. Tanida Seoul National University, Korea

M. Ieiri, M. Naruki^{*}, K. Ozawa, H. Takahashi, T. Takahashi High Energy Accelerator Research Organization (KEK), Japan

> K. Nakazawa, M. Sumihama Gifu University, Japan

B. Bassalleck University of New Mexico, USA

> K. Hicks* Ohio University, USA

> > L. Guo*

Florida International University, USA

2013/7/1

J-PARC P42 Collaboration

ahnjk@pusan.ac.kr

 $\gamma\gamma$