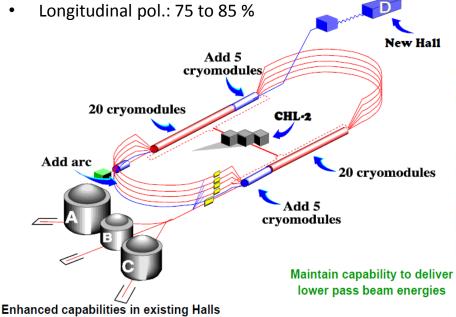
Large Area GEM for current and future experiments in Hall A @ JLab Kondo Gnanvo, University Of Virginia, Charlottesville VA, USA RD51 Coll. Meeting, July 5-6, 2013, Zaragoza, Spain

GEM R&D Team @ UVa

N. Liyanage, V. Nelyubin, K. Gnanvo, C. Gu,

K. Saenboonruang, X. Bai, N. Tonnu, S.Sacher


Outline

- The Super Bigbite Spectrometer in Hall A @ JLab (SBS)
 - The SBS program and GEM-based Tracking
 - Construction and preliminary tests of the SBS GEM prototypes
- Large Triple GEM R&D @ Univ. of Virginia
 - SoLID / EIC GEM Prototype
 - Design for 200 cm \times 50 cm 2D triple GEM chamber
- Test beam at Fermilab in October 2013
 - Test SBS and SoLID/EIC GEM Prototypes
 - Testing large size APV25-based Electronics

12 GeV Upgrade of CEBAF @Jefferson Lab in Newport News VA, USA

CEBAF 6 GeV (before 2013)

- Max. current: 200 µA
- Max. Energy: 5.7 GeV

CEBAF 12 GeV (after 2014)

- Max. current: 90 µA
- Max. Energy: 11 GeV (Hall A, B, C), 12 GeV (Hall D)
- Longitudinal pol.: 75 to 85 %

Newport News, VA

The Super Bigbite Spectrometer in Hall A @ JLab (SBS)

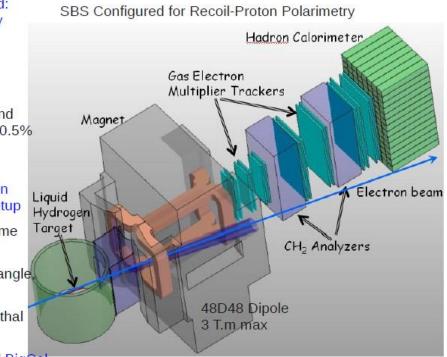
Some challenging experiments in Hall A

	÷				
Experiments	Luminosity	Tracking Area	Resolution		
	(s·cm²)⁻¹	(cm²)	Angular (mrad)	Vertex (mm)	Momentum (%)
GMn - GEn Hadron Arm BigBin Beam BigBin GasCher Electron Arm	up to 7·10 ³⁷	40x150 and 50x200	< 1	<2	0.5%
GEp(5) Proton Arm CEM BigBen Target Beam Electron Arm Electron Arm BigCal Lead-Glass Calorimeter	up to 8·10 ³⁸	40x120, 50x200 and 80x300	<0.7 ~1.5	~ 1	0.5%
	Most demanding				
SIDIS Hadron Arm NSF RICH DOE/Dubna HCalo Beam BigBite Electron Arm CEN ECalo	up to 2·10 ³⁷	40x120, 40x150 and 50x200	~ 0.5	~1	<1%
	High Rates	70 μm spatial resolution			

Super Bigbite Spectrometer (SBS)

- SBS is the first apparatus built for the 12 GeV upgrade,
- Set of instrument for flexible spectrometer configuration

- Dipole Magnet
- GEM for Tracking
- Calorimeters
- CH2 Analyzer for Proton Polarimeter for GEp (5)
- Dual-radiator RICH for SIDIS Program

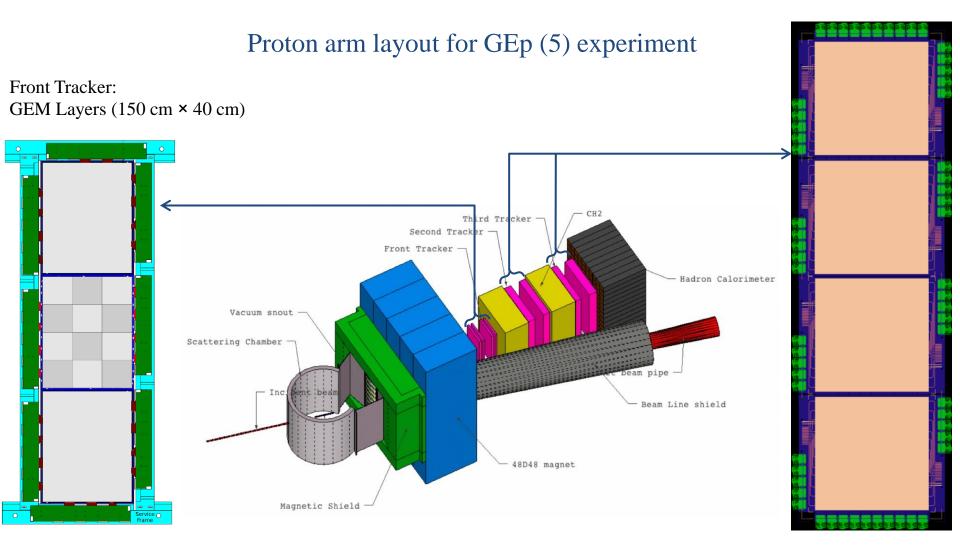

 Support high background: 500 kHz/cm² (low energy photons mainly)

High Luminosity: 8 x 10³⁸ cm⁻²s⁻¹

- Forward angle
- Large acceptance
- Good angular (0.2 mr) and reasonable momentum (0.5% @ 4-8 GeV/c) resolution
- Flexibility: use the same detectors in different experimental setup
- 2 tracker geometries, same base module
 - 1st front, momentum, angle, vertex

2nd polarimeter, asimuthal scattering

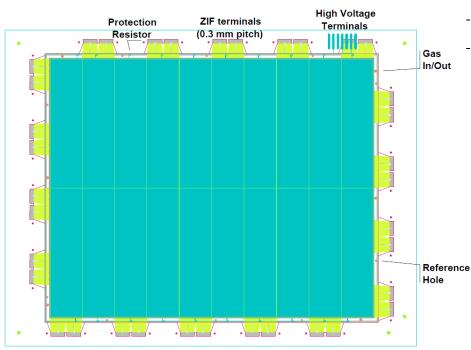
Also GEM in BigBite and BigCat

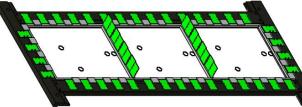


J.R.M. Annand, JointGEM Meeting, Helsinki, July 2010

SBS Configured for Recoil-Proton Polarimetry

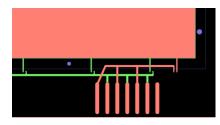
Super Bigbite Spectrometer (SBS)


Back Tracker Proton Polarimeter: 8 GEM Layers (200 cm × 50 cm)


SBS Front Tracker 40 × 50 cm² GEM Module (E. Cisbani, INFN Roma, INFN Catania)

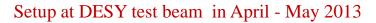
Active area $40 \times 50 \text{ cm}^2$

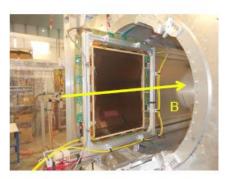
- 18 modules for the 6 layers of the front tracker
- Low material budget , minimum dead area


Mechanical support frame

Small revision of GEM foil:

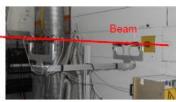
- Resistor pads 2 mm out of the frame.
- Larger HV paths
- Pros: easy access GEM sector HV
- Cons: Resistors no longer protected by


the frames

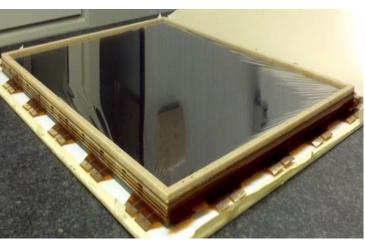

Current Status

- 1. Material:
 - 1. Procured and availabled:
 - 1. All PERMAGLAS frames procured and available
 - 2. Almost all drifts foils procured and available
 - 3. 10 readout foils + 3 honeycomb planes
 - 2. Ordered:
 - 1. 30 GEM foils (new design revision)
 - 2. Outer frame prototype (support 3 modules + electronics + gas pipes ...)
- 2. Electronics/Firmware ... (⇔Paolo Musico)
- 3. Gas system main functionalities ready
- 4. HV system ... Optimization to be done, spark detection (?)
- 5. DAQ Software ... stable versions/development
- 6. Analysis Tools ... slow development
- 7. Characterization stand ... in progress

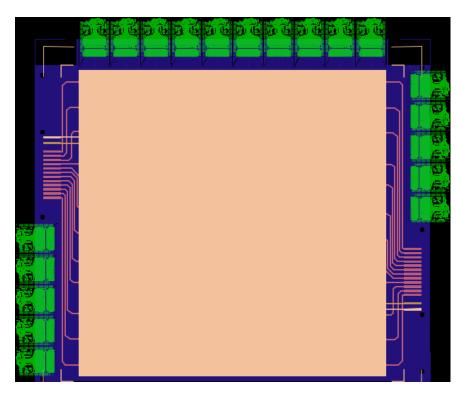
SBS Front Tracker Prototype (E. Cisbani, INFN Roma, INFN Catania)

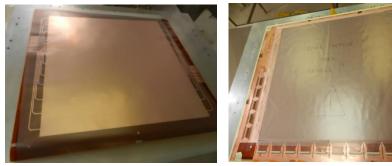


- 2 cm × 2 cm small scintillators as telescope for trigger
- One SBS GEM in the solenoid open space
- Either 2 small GEM chambers or 1 small and 1 SBS
 GEM beyond the magnet as trackers
- HV scan, beam momentum scan, magnetic field scan
- Unexpected gain drop in all chambers (reason unknown)
- 3000 runs (50K events / run), data are being analyzed



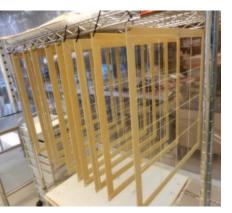
Big GEM + Solenoid


Scintillators


SBS Back Tracker $50 \times 50 \text{ cm}^2$ GEM Module

(N. Liyanage Group, Univ. Virginia USA)

- Active area $50 \times 50 \text{ cm}^2$
 - 32 modules needed for 8 layers proton polarimeter.
- Wide GEM frames (30 mm) and readout board frames (74 mm) along x-axis
 - Better stretching, GEM HV sectors electrodes
 - alignment holes away from active area
 - Room for strips connectors
- No protective resistors on the GEM foils
 - HV sectors accessible through contacts
 - External board for protective resistances
- ZIF connectors replaced by 130-pins Panasonic connectors
 - Compatibility with SRS Electronics
 - More robust and easy to operate

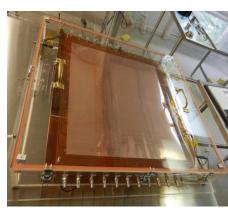


GEM and 2D readout from CERN workshop (Rui)

Clean Room & Equipment for the assembly

Storage of the frames

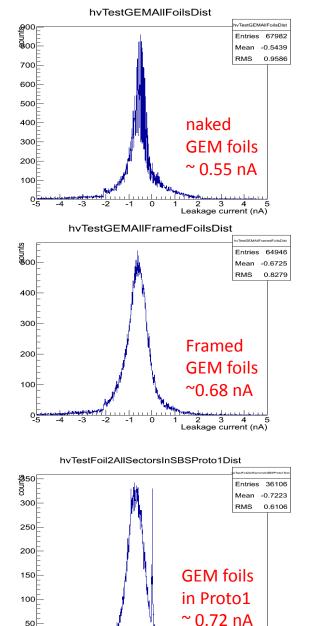
Frames holder for cleaning in USB


Ultra sonic bath (USB) with demineralized Water

Large area $(3 \times 7 \text{ m}^2)$ Class 1000 Clean Room

Storage of the framed foils

Glue dispenser



Tacky roller \rightarrow dust removal

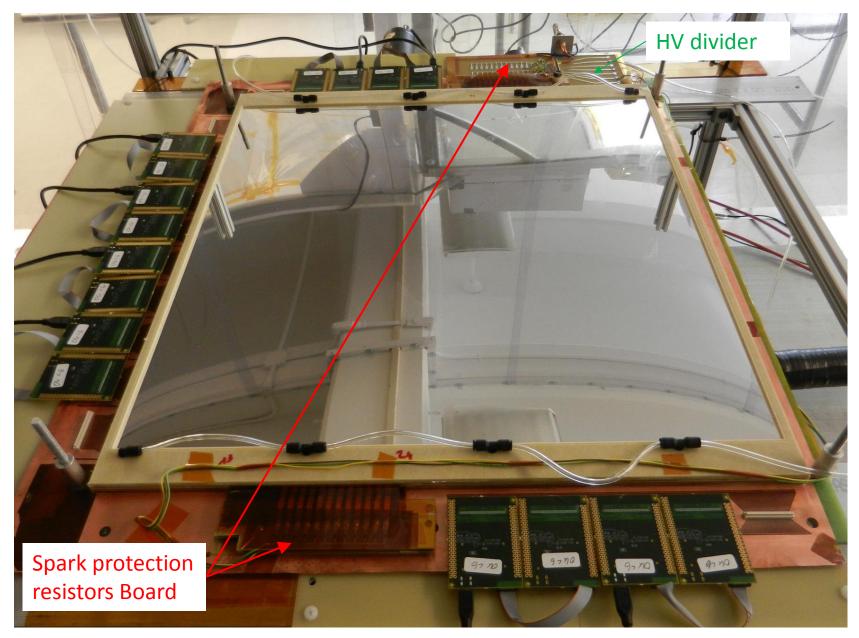
Leakage Current Measurement: HV Test in N2

- We use an Iseg EHS 8060x_105 6 kV HV module with a Wiener MPOD high voltage crate. High voltage is controlled using a command line interface through an internet protocol.
- For the test we use the fast ramp up mode of the supply with a rate of 1200 V/s. the power supply is sampling the current on a millisecond scale and the trip occurs within a few milliseconds of current over limit.
- The leakage current drawn by the GEM foil is measured using a Keithley 6487 picoammeter, at a sampling rate of 120 ms read into the computer through a Labview interface and save the readings into a text file.
- A GEM sector has a capacitance of approximately 2 nF; and the resistance engaged in the HV module is ~ 50 M Ω , once the stable voltage is achieved this resistance is shunted automatically within the supply). As a result, when we are setting the required high voltage of 550 V, the initial current is a couple of μ A, then quickly drops and stabilizes to less 1 nA leakage current far better than the 5 nA requirement.

oo Luuu

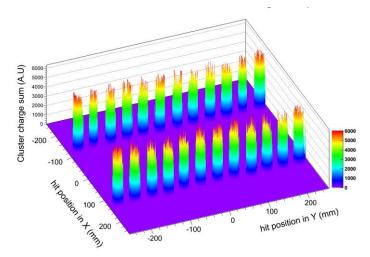
-2

12

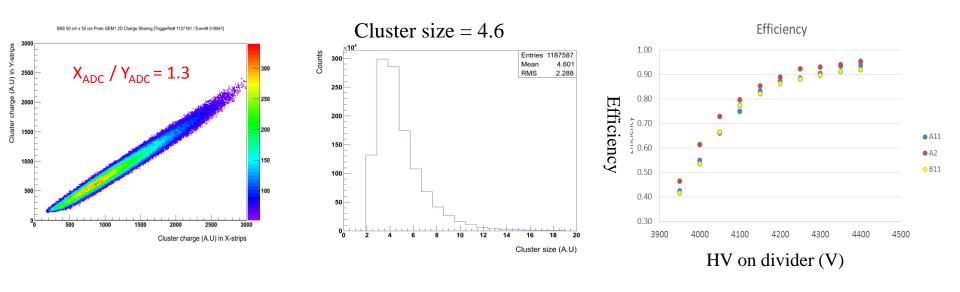

3

Leakage current (nA)

50


7/5/2013

SBS Back Tracker Prototype



Preliminary tests of Proto I

- Cosmic data: 1.5M events HV = 4.2 kV on the divider
- Cluster size = 4.6, Good charge sharing with a ratio = 1.3
- Data with the ⁹⁰Sr for each of the 24 HV sectors
- Average ADC count per bin = Σ_N (ADC counts) / N_{hits}, Good gain uniformity for of all sectors
- ~ 92 to 94 % efficiency for all the 24 HV sectors
- We should expect about 97% but a few % drops explained by the spacers

⁹⁰Sr: Uniformity over all sectors

RD51 Coll. Meeting, July 4 & 5, 2013

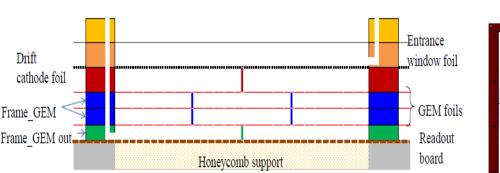
Preliminary tests of Proto I

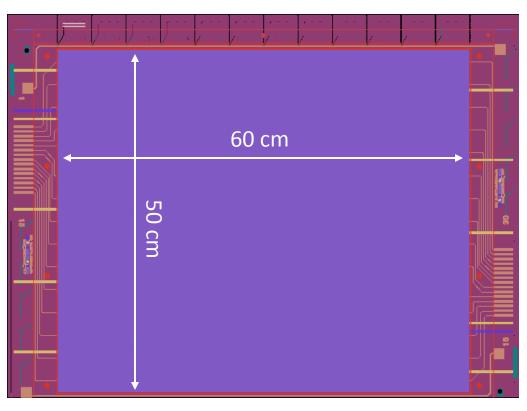
100

Big efficiency drop in the vicinity of the spacers

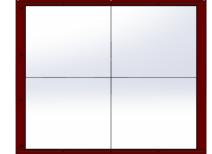
٠

Spacer width of 300 µm leads to a drop over up to 2 mm

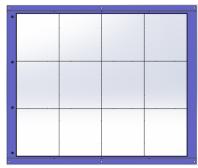

Average ADC counts


000 000 r charge sum (A.L

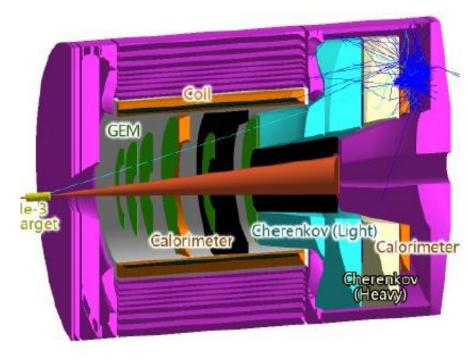
Cluster . Y (mm) HV sectors boundaries also leads to efficiency drop \rightarrow 4000 but with lower loss and over a narrower strip 3000 -100 Average ADC count per bin over a large number of 2000 1000 -200 events = $\Sigma_{\rm N}$ (ADC counts) / N_{Hits} 100 200 -200 -100 X (mm) Gain uniformity along X-strips Gain uniformity along Y-strips Average ADC counts Average ADC counts 600 500 500 400 300 300 200 200 100 100 0 -200 -100 100 -200 -100 100 200 200 X (mm) Y (mm) ing, July 4 & 7/5/2013 15


Back Tracker GEM Module: New Design

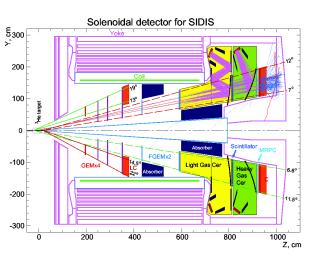
- Larger active area: 60 cm × 50 cm²
 - Improve the F.O.V. of the proton polarimeter by 20%
- Less spacers in the frames:
 - Drift frame and 3rd GEM frame
 - duce the impact of dead area
 - Need stronger stretching tension
- Other minor adjustements
 - Vertical gas flow → drift cathode is a GEM foil without copper on top
 - A few other modifications derived from experience when building the prototype



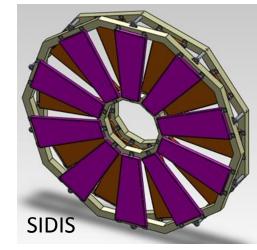
Spacers for drift and 3rd GEM frames1

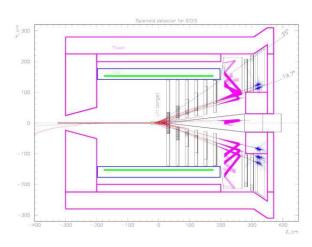

Spacers for 1st and 2nd GEM frames1

Large Area GEM R&D @ Univ. of Virginia


The Solenoid Intensity Device (SoLID) for the 12 GeV Program in Hall A @ JLab

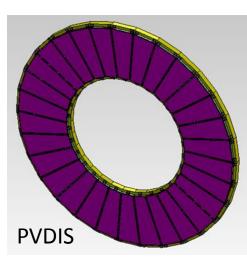
- Beam energy = 8.8 GeV and 11 GeV
- Luminosities:
 - 3 He (neutron) : 10³⁶ N/cm²/s
 - NH_3 (proton) : 10^{35} N/cm²/s
- Solenoid magnet
 - Full azimuthal angle coverage
 - Crucial for 4D mapping of asymmetries
 - Reduces systematics when extracting moments
- Tracking with GEMs
 - 6 GEM disks for SIDIS
 - 4 GEM Disks for PVDIS
- Electron identification:
 - EM cal. for large angle and high momentum
 - EM cal. and light gas Cerenkov for forward angle
- Pion Identification
 - Heavy Gas cerenkov andd TOF (MRPC)
- Fast pipeline electronics for DAQ




SoLID GEM Trackers

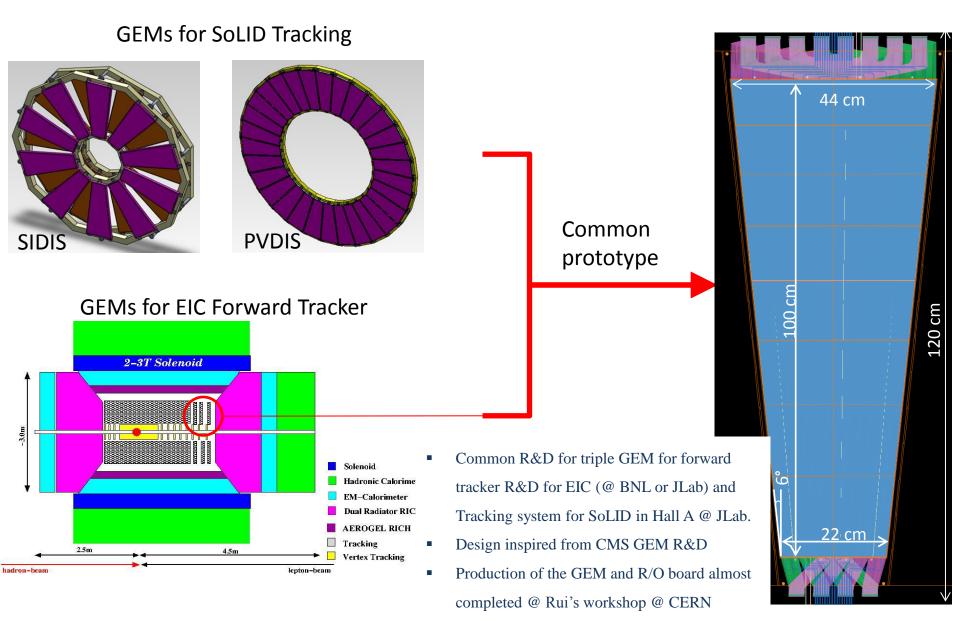
GEMs in SIDIS configuration

Activear Z (cm) R_I (cm) R_O (cm) Plane # of channels ea 197 46 76 1 1.1 24 k 2 28 250 93 2.5 30 k 3 290 31 107 3.3 33 k 5.2 4 352 39 135 28 k 5 435 49 95 2.1 20 k 592 67 6 127 3.7 26 k


GEMs in PVDIS configuration

~ 161 k

~18

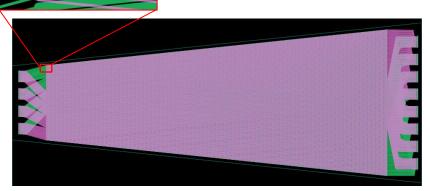

total:

Plane	Z (cm)	R _I (cm)	R ₀ (cm)	# of channels
5	150	55	115	30 k
6	190	65	140	36 k
7	290	105	200	35 k
8	310	115	215	38 k
total:				140 k

Total estimate: 100 m² GEM foils for SoLID

GEM R&D for SoLID and EIC

SoLID / EIC GEM Design

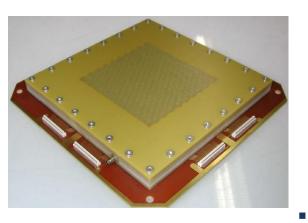

We should reduce as much as possible the dead area on the sides of the chambers

• 16 sectors from the top and 16 from the bottom

U/V readout board

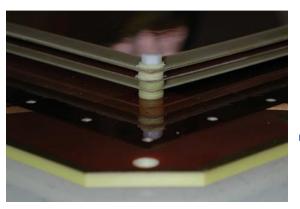
- "COMPASS-like" 2D stereo angle (12°) U/V readout
- Pitch = 550 μ m, top strips = 140 μ m, bottom = 490 μ m
- The support for the r/o based on Rohacell foam instead of honeycomb sandwiched between 100 µm fiberglass
- connectors on the top and bottom part of the r/o board

SoLID / EIC GEM 2D Current status

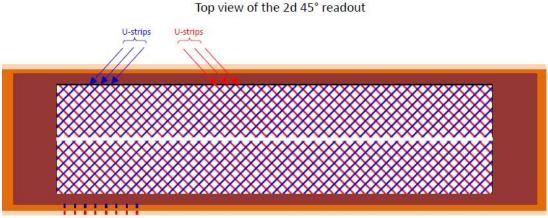

- Production of the GEM foils and readout board completed by Rui's
- Frames from RESARM (Belgium) already delivered
- We plan to build the chamber in September (2013)
- Because we would like to bring it in the Test beam at Fermilab early October (2013)


Building the Largest $(2 \times 0.5 \text{ m}^2)$ GEM chamber

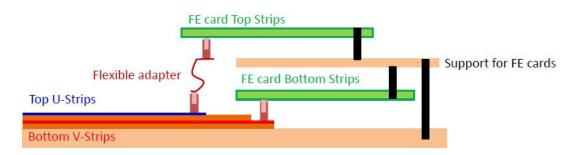
- CERN RD51's goal for 2014: Produce a GEM foil with an 2×0.5 m² active area
- A large area GEM chamber would be a big breakthrough for tracking systems
 - Could be an alternative to SBS Back Tracker Chamber
 - Also could be the upgrade of the drift chamber for Hall A HRS apparatus
 - Future tracking and muon systems @ Jlab and elsewhere
- A proposal has been submitted to JLab FY14 LDRD for funding
- A lots R&D involved (see coming slides).
 - "Re-Openable" detector
 - Big challenges for 2D readout with high spatial resolution and low occupancy
 - Big challenges for the construction of such a big size detector


Idea for the assembly of the GEM chamber

From 10 cm × 10 cm "LEGO" GEM to 200 cm × 50 cm "MAXI LEGO" GEM chamber

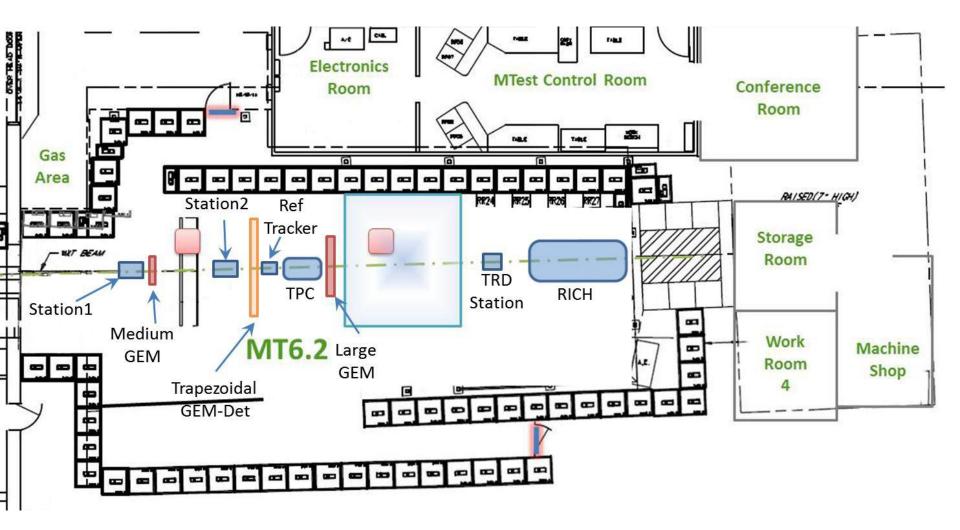


- Will required very large frames (with or without spacers inside)
- Mechanical stretching \rightarrow control of the stretching tension
- Still need ~ 24 hours to frame and glue a foil (might be OK if production and assembly time is not critical issue)
- Framed GEM are not glued together in the final assembly
 - Frames are stacked just as in small 10 cm × 10 cm CERN GEM
 - Will make it simpler and faster than NS2 technique to replace bad GEM foil in the assembled chamber
- Flexibility in the design
 - We could avoid soldering the resistor directly on the GEM foil as in NS2 technique

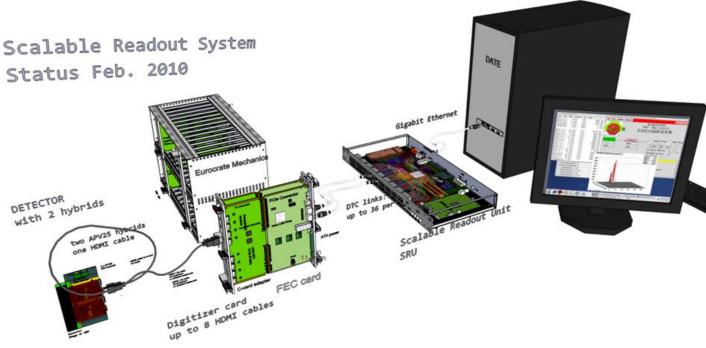


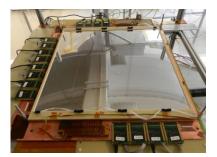
Idea for 2D readout for $2 \times 0.5 \text{ m}^2$ GEM chamber

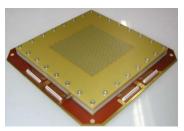
- "COMPASS-like" 2D Cartesian readout
 - Pitch = 400 μm, top strips = 140 μm,
 bottom = 360 μm
- Strips 45° w.r.t the detector axis
 - Reduce the length of the strips
- Strips splits in the middle
 - Even shorter strips → reduce
 capacitance and strips occupancy
 - But double number of channels

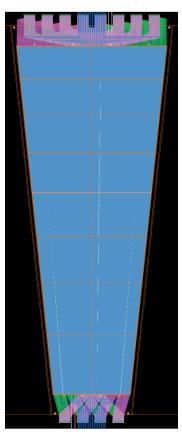

Cross section view with FE cards

Test beam at Fermilab


- FLYSUB is a consortium consisting of BNL, Florida Tech, Stony Brook University (SBU), University of Virginia (UVa), and Yale University working on the R&D for GEM-based tracking and PID detectors for the EIC
- We've been approved for 3 weeks beam access at the Fermilab Test Beam Facility (FTBT) in
 October 2013 → the consortium will bring more than 20 GEM chambers detectors (tracking,
 Cerenkov, TPC ...)
- UVa will be bringing:
 - SoLID / EIC large GEM prototype, one 50 × 50 cm² SBS GEM chambers, 3 small (10 × 10 cm²) GEMs + 1 Micromegas for the tracking
- The main goal for us is to measure position resolution SBS and SoLID GEMs (U/V readout) and performances at high rate and in magnetic field.
- Also an opportunity to test our newly acquired UVa medium size (10K) SRS electronics


MT6.2 Layout with all detectors along the beam-line (detectors are not to scale).




Testing the APV25-SRS system with the SRU and about 10 K channels

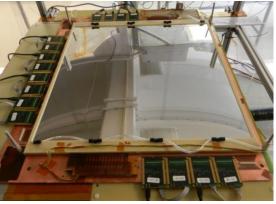
- 80 APV25-SRS FE cards: 10K channels
- 6 ADC boards and one SRU
- 5 FEC v6: More FPGA resources, DDR memory, dual SFP connector
- Will be used to read out all UVa GEM during the test beam
- Goal: Testing rate capability and stability of the large SRS

Electrons

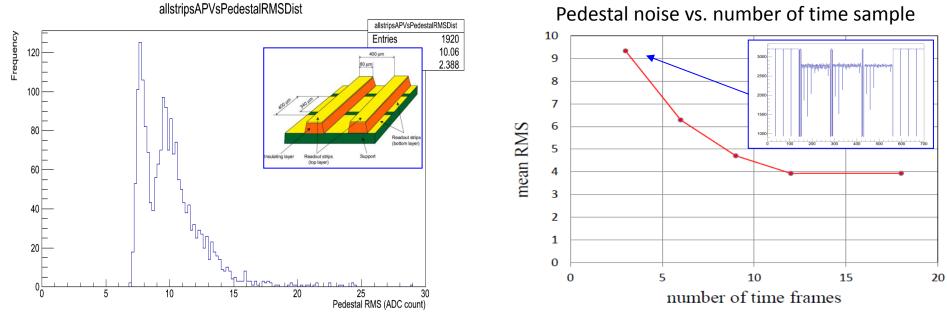
- Energy of beam: 10 GeV
- Intensity: Single particles (if possible), Beam spot size: as small as possible
- Pions
 - Energy of beam: > 4 GeV, > 20 GeV
 - Intensity: single particles (if possible); variations 1k 100k particles/ 4 sec spill, Beam spot size: as small as possible; about 1 cm2
- Kaons
 - Energy of beam: > 13 GeV
 - Intensity: single particles (if possible)
- Protons
 - Energy of beam: > 27 GeV
 - Intensity: single particles (if possible), Beam spot size: as small as possible

http://www-ppd.fnal.gov/FTBF/schedule/MTest14.html

FTBF Fermilab Test Beam Facility					PPD 🛟 Fermilab		
Fermilab: 🔺 Home 🛛 🕜	Help 🛛 🙃 Phone B	Book 🏌 Fe	rmilab at Work		Search	GO	
FTBF	Schedu	le			100		
Become a User	This is the official schedule for FTBF activities. Typical run periods establish beam on Wednesdays, and run through Tuesday. Scheduling meetings are held most Tuesdays at 2pm. To schedule beam time please see our <u>Guidelines for Requesting Beam</u> and contact the <u>Test Beam Coordinator</u> .						
Working at FTBF							
Beam Details							
Facility Details	Accelerator N	OvA Upgra	de Shutdown disab	les Test Beam fi	rom April 30, 20	012 ~ July 1, 2013	
Instrumentation	MTest FY13	MTest FY	14 MCenter FY13	Previous Years	Calendar		
High Rate Tracking	Datas	Functionant	2013 Description		llees	Area Contrat	
Location	Dates	Experiment	FLYSUB-Consortium	ipuon	User	Area Contact	
Test Experiments		<u>T1037</u>	PETSOB-Consolium		Primary	MT6-ALI <u>Dehmelt</u>	
Schedule	2. Oct 9 - Oct 15	<u>T1037</u>	FLYSUB-Consortium		Primary	MT6-ALI <u>Dehmelt</u>	
Contact & Personnel							
Performance & Feedback	3. Oct 16 - Oct 22	<u>T1037</u>	FLYSUB-Consortium		Primary	MT6-ALI <u>Dehmelt</u>	
Pictures							


Summary

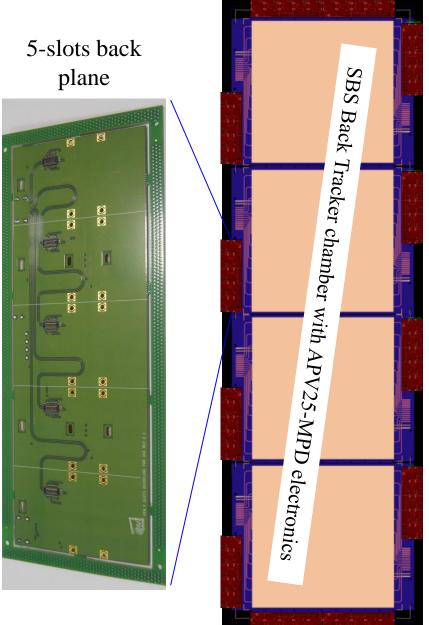
- Intense R&D activity at UVa for large area GEM for tracking systems in Hall A @ JLab
- Successful SBS Back tracker GEM prototype built and under test
- Upgraded design for SBS Back Tracker under production.
- Large trapezoidal triple-GEM prototype under construction for SoLID and EIC.
- Ongoing R&D for a $200 \times 50 \text{ cm}^2$ Triple GEM with 2D readout
- Acquisition of a large size SRS electronics, upgrade our capability to 10K channels.
- Test beam at FermiLab in October 2013 to test SBS Back Tracker prototype and SoLID/EIC chamber as well as rate capabilities of large size APV25-SRS electronics


Backup

APV25-SRS Electronics @ UVa

detector

RD51 Coll. Meeting, July 4 & 5, 2013


Upgrade of the APV25-MPD Electronics @ UVa

- New version of APV25-MPD cards with Panasonic connectors (P. Musico, INFN Italy)
- New Back Planes with 5 slots → Compatibility with Back Tracker GEM readout (P. Musico, INFN Italy)
- We acquired the new system with 5 APV25-MPD cards, on 5-slots Back Plane and
- Latest version of the MPD VME board

Panasonic connectors

APV25-MPD FE cards

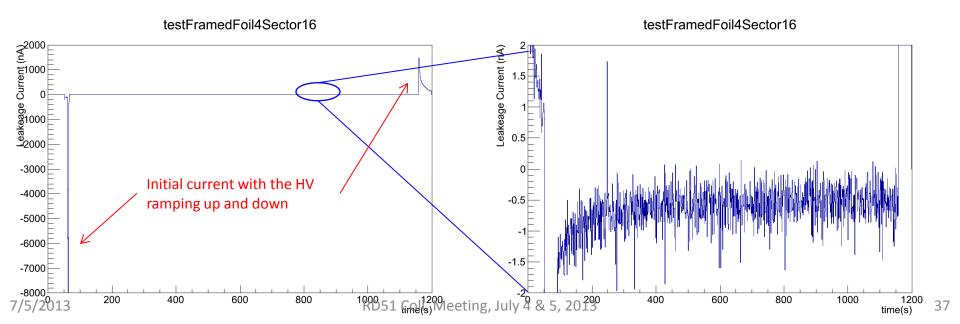
Gain study of APV25 electronics for SRS & MPD

Initialization parameters for the APV25 FE cards

 $I_{pre} = 98$, $I_{pcasc} = 52$, $I_{psf} = 34$, $I_{sha} = 22$, $I_{ssf} = 34$, $I_{psp} = 55$,

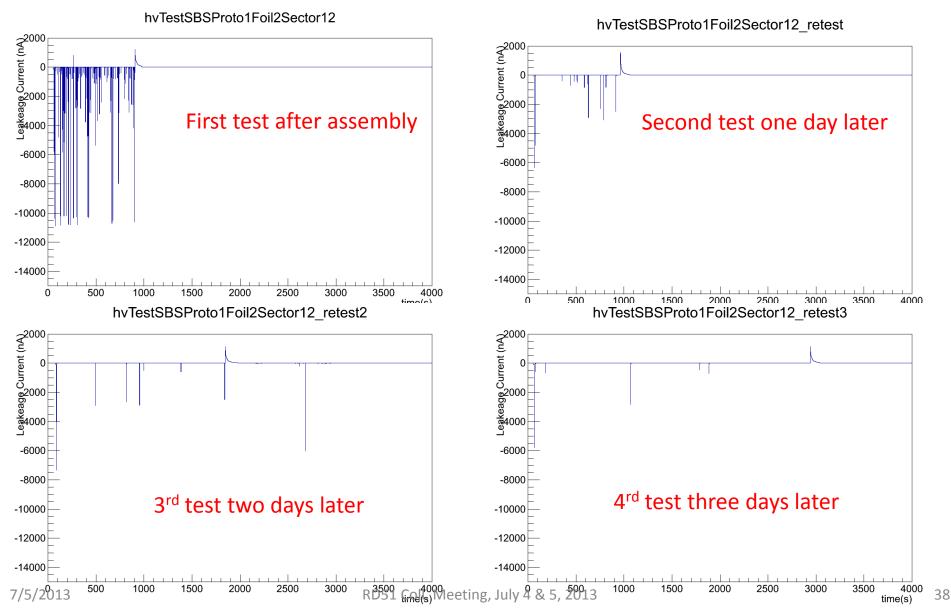
 $I_{muxin} = 16, V_{for} = 30, V_{fs} = 60, V_{psp} = 40, MUX_{gain} = 1$

apv25 Gain

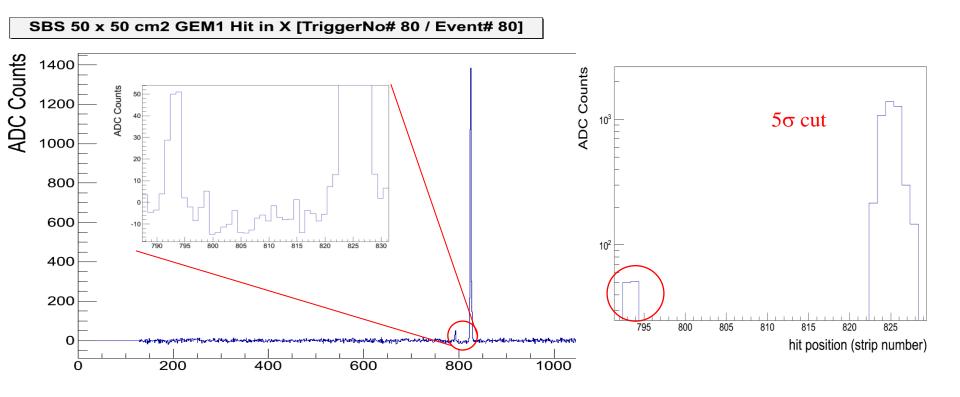

1200 (October 2012) SRS: y = 0.0043x + 31.7021000 Gain = 232 e-/adc channels 800 Operation of the SBS prototype: ADC counts Ar/CO2 (70/30) with 4.1 to 4.2 600 SRS MPD: y = 0.0012x - 33.947 MPD kV on HV divider \rightarrow Estimated 400 Gain = 833 e-/adc channel 200 0 0.E+00 6.E+05 1.E+05 2.E+05 3.E+05 4.E+05 5.E+05 7.E+05 8.E+05 9.E+05

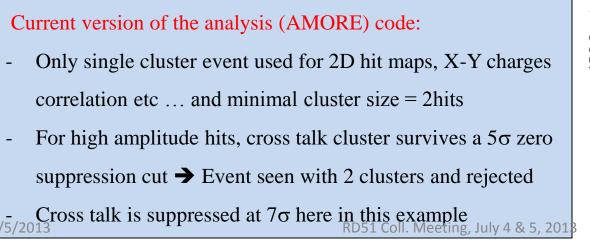
number of injected charges

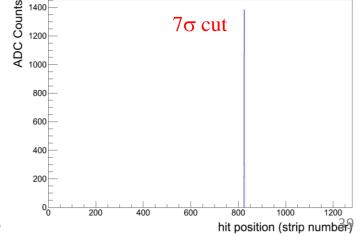
gain

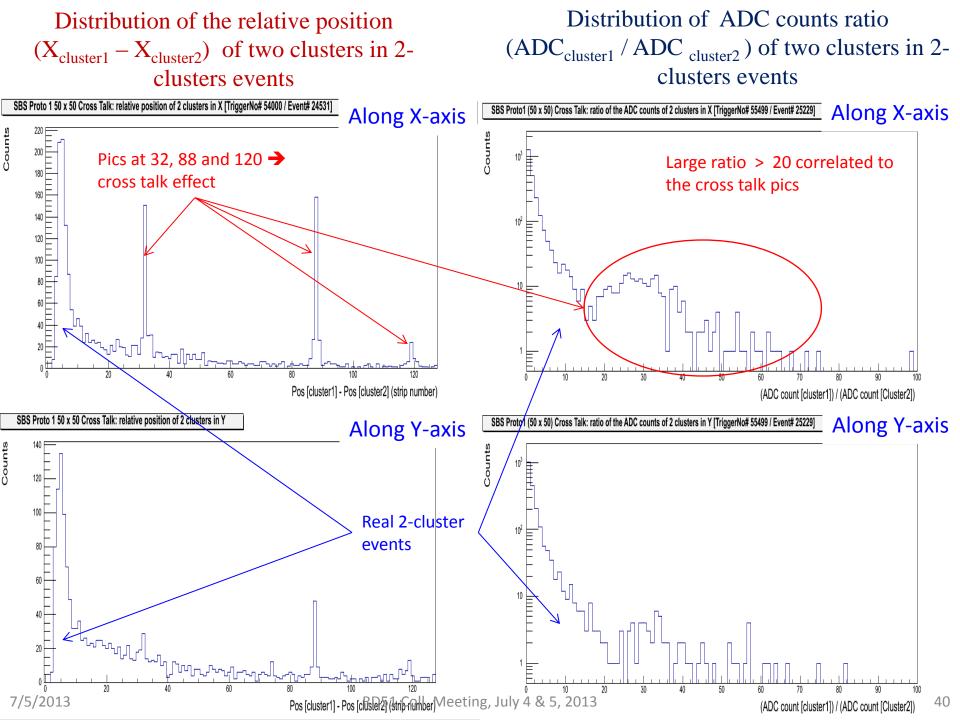

HV test of the GEM sectors

- We use an Iseg EHS 6 kV HV module in a Wiener crate, HV controlled through an internet protocol.
- Fast ramp up mode at a rate of 1200 V/s.
- The leakage current in the GEM is measured using a Keithley 6487 picoammeter, at sampling rate of 120 ms with a Labview interface and saved in txt file.
- HV GEM sector ~ 2 nF and with a resistance the HV module is ~ 50 M Ω , (once the voltage is achieved this resistance is shunted automatically within the supply).
- HV of 550 V, the initial current is a couple of μ A, then quickly drops and stabilizes to less 1 nA leakage.
- We leave the HV for about 2 min and if no spark \rightarrow sector is good




Recovering of a bad HV sector


Excess of glue leaked onto the sector during assembly \rightarrow sector recovered after curing on N2 or at 50 degree



Cross Talk in APV25 Electronics

