Update on the integration of SRS into the ATLAS DAQ environment

Andre Zibell Ludwig-Maximilians-Universität München

RD51 Collaboration Meeting Zaragoza, 6.7.2013

Outline

- Micromegas @ATLAS DAQ present situation
- SRS for ATLAS DAQ
- MAMMA L1 Micromegas chamber
- LMU Cosmic ray facility measurements
- Status and Outlook

Motivation

- Micromegas detectors have been chosen as technology for the ATLAS New Small Wheels (2018)
- Small prototype Micromegas detectors have been installed at ATLAS (see Poster from Konstantinos Ntekas), larger ones (O(m²)) will be installed during this long shutdown
- An integration of these Micromegas detectors into the ATLAS trigger and data aquisition is neccessary to analyze their performance in direct comparison with the current ATLAS muon tracking system
- Therefore an ATLAS compatible ReadOutDriver (ROD) has been developed, that allows the combined readout of the Micromegas together with all other ATLAS subsystems

ATLAS data acquisition chain

SRS (Scalable Readout System, RD51 Development)

SRU (Scalable Readout Unit)

Main tasks:

- Reception and distribution of Level1 triggers, LHC synchronization (TTC)
- Event Counter
- Bunch Counter
- Clock Phase
- Bunch Counter reset
- Event Counter reset
- Detector data collection and event building (DTCC)
 (BCID, EVID, ..., Data)
- Data transmission to ROS PC via SLINK
- Slow control / DCS / Data preview via Ethernet:

Register setting on APV, FEC, SRU, ..

TTC interface (Trigger, Timing, Control)

- Communication with standard ATLAS trigger electronics ("TTC-Crate", ...)
- Receives L1A (Level 1 Accept) trigger, Bunch clock, triggertype, resets of eventcounter and bunchcounter as well as directed or broadcast configuration data

DTCC Link

(A. Martinez)

- Connects FEC Card(s) with SRU to transmit:
 - <= LHC Clock, L1 Triggers and configuration commands from SRU to FEC
 - => Detector- and configuration data at 640 Mbit/s from FEC to SRU
- Hot plug ability and automatic resynchronisation
- Support for up to 40 FEC cards (~82k channels with APV25 Hybrids)
- Conventional CAT cable with RJ45 plugs

SLINK implementation

(M. Della Volpe, R. Giordano, V. Izzo, S. Perrella)

- ATLAS transmits event data from ROD to ROS using SLINK
- Now: No longer need of a seperate HOLA daughter card (as used widely in ATLAS), due to implementation of the SLINK serialisation logic IP core in the Virtex6 FPGA (uses one of the FPGA's GTX transceivers)
- Successfully tested data transfer to a standard ROS PC.
 Valid ATLAS data frames are received.

DCS / Slow control

- Slow control via optical Gbit ethernet connection to the SRU
- SRU DCS requests are handled directly, packets for FEC and APV are forewarded via DTC links (ethernet switch functionality within SRU)
- Online access to parameters like run control, error conditions, ...
- Fine tuning of TTCrx, APVs, etc...

L1 Micromegas chamber

- MAMMA L1 chamber first sqare meter sized micromegas detector
- Active area: 0.92 x 1.02 m², 2048 channels
- Several successful runs with 160 GeV pions @
 CERN beamlines and cosmic muons, using direct reaout of one FEC card via Ethernet

LMU cosmic ray facility (CRF)

- Two full sized ATLAS BOS MDT muon chambers supply cosmic muon track predictions below 40µm after calibration
- 10cm broad Trigger scintillators cover the full area of 4 x 2.2 m², segmentation along tubes as second coordinate
- Identification of low energy muons by scattering angle
- ~100Hz CRF trigger rate, ~30Hz through L1 chamber

CRF DAQ

- Three data streams to be synchronized:
 - Trigger time and trigger pattern recorded using VME
 - MDT reference track data are read by a PC with a SLINK FILAR card
 - A second PC reads MM data from the SRU with a SLINK ROBIN card
- No corrupted SRU data have been observed so far, synchronisation of the different data streams with help of the TTC trigger information works without errors

Analysis goals and status

- Comparison of Micromegas Cosmic muon Track measurements with MDT Reference chamber track predictions
- Analysis of residuals, efficiency and amplification as a function of X and Y coordinates over the full L1 chamber area
- Analysis of Micromegas angular resolution (microTPC mode)
- Combined data taking for track comparison started
- FEC based zero suppression of APV data shows same behaviour as the well-tested PC-based data reduction methods

Correlation MM with MDT track prediction

14

Summary and Outlook

- MAMMA L1 micromegas chamber installed at the LMU cosmic ray facility
- Data aquisition with FEC card and SRU running in an ATLAS-like setup without any errors so far
- Zero-suppression FEC firmware variant shows similar results as the "standard" version that has been used intensively in the past, but with reduced amount of data, allowing significant higher trigger rates
- Systematic scanning of L1 chamber with cosmic muons has started
- Coincidence trigger rate is ~2.5M events per day
- Extension of the system to 4 chambers (NSW quadruplett) possible
- The developed SRU firmware complies with the demands on an ATLAS compatible ReadOutDriver
- Once LHC restarts in 2014, large-sized Micromegas detectors installed in ATLAS can be read with the SRS system

Standard ATLAS Event Data

- L1A trigger (from TTCrx (ATLAS), NIM input (Lab) or slow control (debug)) stored in FIFO memory
- ATLAS Event fragment generated for each trigger
- Header and Trailer information to identify Detector, Run and Event metadata
- Converted data from the APV chips will be zerosuppressed by the FEC and then written (via DTC link) to FIFO memorys in the SRU FPGA
- Full event fragment is formed and sent out via SLINK to the ROS PC

	32 bit
1	Begin of Fragment
2	Start of Header
3	Header Size
4	Format Version
5	Source Identifier
6	Run Number
7	Ext. L1 ID
8	BCID
9	L1 Trigger Type
10	Detector Event Type
	(ROD fragement payload)
N – 4	Status Element n
N – 3	Number of Status Elements
N – 2	Number of Data Elements
N – 1	Status Block Position
N	End of Fragment

22 hit

Garching cosmic ray facility

APV25 Charge Sensitive Analog Frontend

- Analogue pipeline ASIC used for read-out of silicon strip detectors in the CMS tracker
- 128 charge sensitive amplifier channels
- Pipeline buffer of 192 cells depth for each input channel, filled consecutively with every clock cycle (40.08 MHz @LHC)
- Blocks of one or more pipeline columns can be read out for each trigger
- => Time evolution of integrated charge signal for each detector channel in steps of ~25 ns

128 preamplifier channels → Analogue pipeline buffer → Selected columns output

L1A rate vs. APV readout time

- APV readout: 140 clock cycles @40.08 MHz LHC clock frequency
 (128 channels + 12 overhead)
- MicroMegas detectors require 10 20 time bins to sample signal shape (1400 – 2800 clock cycles)
- => Mean time difference between Level 1 triggers:
- ~600 clock cycles @70 kHz trigger rate
- Implementation of busy-logic to decide, which event to process fully (trigger to APV chips), and which not
- Skipped events also generate ATLAS event frame with no data content in FIFO buffer to satisfy ROS requirements
- Tested and working with up to 100 kHz random trigger rate

Garching/LMU Cosmic Ray Facility

Installation of prototype chambers in ATLAS

First data in ATLAS

- First run taken with ATLAS triggers (L1A 70 kHz)
- LHC bunch structure visible in data -> TTC and DAQ integration works
- Micromegas not included in general ATLAS DAQ ("standalone mode")
- => no Level 2 trigger information
- => no Synchronization with ATLAS muon tracks

