Development of the GEM-based Read-Out Chambers for the ALICE TPC

Piotr Gasik for the ALICE TPC Collaboration

Universität München, Exzellenzcluster Universe, Boltzmannstr. 2. D-85748. Garchine

ALICE TPC upgrade

ALICE at the LHC at CERN is planning a major upgrade of the central barrel detectors to cope with an increase of the LHC luminosity in Pb-Pb after 2018. The goal is to record Pb-Pb interactions at a rate of 50–100 kHz after Long Shutdown 2 (LS2), which is a factor of about 100 more than the current data acquisition rate.

For the Time Projection Chamber (TPC) this implies replacement of the existing MWPC-based readout chambers by continuously operated GEM (Gas Electron Multiplier) detectors to overcome the rate limitations imposed by the present gated readout scheme.

Gas Electron Multiplier

GEM foil

"Standard" dimensions

- ▶ 50 μ m thin polyimide foil (Kapton[®])
- \triangleright 5 μ m Cu-clad on both sides
- $ightharpoonup 50/70~\mu m$ inner/outer hole diameter
- ▶ 140 μ m pitch

GEM principles

 $\mathsf{GARFIELD}/\mathsf{MAGBOLTZ} \text{ simulations of a) electric field inside a GEM; b) 2 electrons entering GEM hole$

GEM as an alternative for MWPC readout

- ▶ no issue with rate capability
- ▶ possibility to efficiently block ions
- \blacktriangleright lower (effective) gain since signal is produced by electrons (fast) + lower noise

GEM-IROC prototype

GEM foils for the prototype

- ▶ 3 single-mask, large-size foils
- ▶ 18 sectors (top side segmented), \sim 100 cm² each
- ▶ 2 mm frame (G10 fiber glass) glued on bottom side

Test box with field cage

- ▶ Drift length: 11.5 cm
- ▶ Drift field: 400 V/cm

Commissioning with ⁵⁵Fe

PS (CERN) beamtime - Nov/Dec 2012

Readout

- ▶ 10 EUDET Front-End Cards (borrowed from the LCTPC Collaboration)
- ▷ PCA16 charge preamp. + ALTRO chip for digitization and signal processing
- \triangleright 16–18 pads (size 4×7.5 mm²) on 64 pad rows
- ▷ Average noise (ENC) at the level of 500–600 e⁻
- ▶ Beam rate: 2000 particles/spill (0.5 s); DAQ rate: 500 events/spill
- **▶** Beam settings:
 - \triangleright 1 GeV/c, 2 GeV/c, 3 GeV/c negative (e⁻, π ⁻)
 - \triangleright 1 GeV/c, 6 GeV/c positive (e⁺, π ⁺, p)
- ► **GEM** settings: Stability-optimized or Ion Back Flow-optimized
- **▶ Gas mixture:** Ne/CO₂ (90/10)

dE/dx measurements

- ► Gain equalization using tracks
- ► No T/P correction
- ► Truncated mean of cluster charge (5–70 %)
- ▶ For comparison: IROC only in ALICE TPC σ E/E \approx **9.5%** (for high η)

ALICE p-Pb beamtime (LHC) – Jan/Feb 2013

Chamber installed underneath LHC beampipe ($\eta \approx 2.6$)

- > 3 weeks under LHC conditions (200 kHz interaction rate)
- ▶ Particle rate ~5000 kHz per rapidity unit
- ► Standalone readout: waveforms, discharges, trips