

Development of Cold-/Fast-Neutron THGEM Imaging Detectors for Investigation of Thermal-Hydraulic Phenomena

<u>M. Cortesi^{a,b}, R.Zboray^a, R. Adams^b,</u> M. Meshkian^b, V. Dangerdof^c, H.-M. Prasser^{a,b} ar Energy and Safety Department, Paul Scherrer Institut, Sw

a) Nuclear Energy and Safety Department, Paul Scherrer Institut, Switzerland
b) ETH Zürich, Swiss Federal Institute of Technology, Zürich, Switzerland
c) Physikalisch-Technische Bundesanstalt (PTB), Braunsweig, Germany

Fluid dynamic studies in BWR Fuel Rod Bundles

Fluid thickness distribution on fuel pin surfaces Zboray et al. 2013 Nucl. Eng. & Design 260 188.

Imaging at the Cold Neutron beam-line (ICON) of SINQ (@ PSI) Detector \rightarrow Scintillator Screen + Intensifier + CCD camera

-) Slow and small field of view -> MPGD technologies

-) More Contrast and Thicker Fluid Films -> Fast neutron

2D Imaging with Cold Neutrons

Cortesi et al. 2013 RIS 84 023305

Ionization electrons are multiplied & localized in cascaded-THGEMs imaging detector.

 Detection efficiency: ~ 5% (cold-n)
 Counting Rate ~ 3 kcps/cm² (Limited by the TDC-based DAQ system)

Cold Neutron Imaging (ICON test-beam)

Goal: Fast-Neutron Tomography

1D High-Efficiency Fast-Neutron Imaging Detector

New THGEM-based Detector Concept

<u>Many Converter n-to-p Layers</u> → high detector efficiency

- n scatter on H in HDPE-radiator foils, p escape the foil.
- p induce e in gaseous conversion gap.
- e- are multiplied and localized in THGEM-detector.
- Combine several 1D radiographs \rightarrow 2D cross sectional tomography.

Cortesi et al. 2012 JINST 7 CO2056

Cortesi et al. 2013 JINST 8 P01016

10x10 cm² Detector Prototypes

Produced using 3D printing technologies Foils thickness = 0.6/1.2 mm Gas gap = 0.6 mm Height = 6 - 10 mm Material → Antistatic ABS

Studies:

- -) Electron Transport Efficiency
- -) Imaging Capability

Cortesi et al. 2013 JINST 8 P01016

Detection Efficiency (First test)

PTB Neutron Facilities (GERMANY) 2.5 MeV, 14 MeV, Broad spectrum (< 18 MeV)

14 MeV Neutrons

Converter (0.6 mm gas gap)	Detec. Effic.
83 foils 0.6 mm thick	<mark>2%</mark> (0.2%) → 7%
55 foils 1.2 mm thick	<mark>3.8%</mark> (0.2%) → 6.7%

2.5 MeV Neutrons

Detection Efficiency vs. Gain

Detection Efficiency \rightarrow -) n energy \rightarrow Converter geometry / Composition -) <u>Detector Gain</u> $\leftarrow \rightarrow \underline{Electronic Noise}$ -) e- transport efficiency in the small gas gap

Small variation of Gain \rightarrow Large variation of the Detection efficiency

Detection Efficiency (new setup)

Gas gap pitch = THGEM hole pitch

2.5 MeV Neutrons

Converter (0.6 mm gas gap)	Detec. Effic.
55 foils 1.2 mm thick	0.78% → 1.13%

Higher Max Detection Efficiency (0.78%) compared to the "standard" configuration (0.22%) due to better focusing of ionization electrons into the THGEM holes!

Fast-Neutron Tomography

Measured Sinogram shows Similar Structures observed in the simulated one!

Energy-Selective Fast-Neutron Imaging Detector

Idea: various energy-selective stacks of many radiator foils + Charge readout

Summary & Future Plan

Goal -> Study of Thermal-Hydraulic Phenomena

Cold-/Fast- neutron tomographic → 2D cross-sectional images <u>Main Application</u>: Multi-phase flow for R&D Nuclear plan technologies <u>Others</u>: Detection of SNM,

Detector technologies → Feasibility study + Small Prototype + Test Gaseous Detector (THGEM-GEM)

Fast neutron Tomography

New Idea: many n-to-p converters, single 2D Detector readout

- * Expected detection efficiency ~7% (300 foils, 2.5 MeV neutrons)
- * 1D Radiography, spatial resolution ~ 1 mm

TWO-FAST Improvement of charge-readout electronics Better production technique for the converter New test beam at PTB for tomography reconstruction

COLD NEUTRON 30x30 cm² ¹⁰B-GEM detector prototype + High counting rate electronics

PROTON RADIOGRAPHY First test with THGEM prototype \rightarrow Next test with better electronics and setup

E-SELECTIVE FAST NEUTRON IMAGING New idea → Nuclear waste characterization & neutron streaming/material activation in power plants