Status and progress of the novel photon detectors based on THGEM and hybrid MPGD architectures

Fulvio Tessarotto (I.N.F.N. – Trieste)

on behalf of the COMPASS THGEM group:

Alessandria, Aveiro, Calcutta, Freiburg, Liberec, Prague, Torino, Trieste

IN THE COMPASS SPECTROMETER INFN

HADRON PID IS PROVIDED BY RICH-1

COMPASS RICH-1: a large gaseous F with two kind of photon detectors providing:

hadron PID from 3 to 60 GeV/c

acceptance: H: 500 mrad V: 400 mrad

trigger rates: up to ~100 KHz beam rates up to ~10⁸ Hz

material in the beam region: 2.4% X_o material in the acceptance: 22% X_o

detector designed in 1996 in operation since 2002 first PD upgrade in 2006

(total investment: ~4 M €)

COMPASS THEEM R&D

diam

MULTI-DIMENSIONAL SPACE:

- Isolating substrate material
- Thickness
- Hole diameter
- Pitch
- Rim size
- Holes and rim production procedure
- Induction field
- Drift field
- Geometrical arrangement
- Gas mixture

INFN

stituto Nazionale

About 50 different THGEM types have been characterized using X-ray:

- optimized drift field (specific for each type)
- large rim \rightarrow large gain but good gain stability guaranteed for small rim or no rim
- production procedure details are very important
- good rate capability

Using UV light sources we investigated:

- photoelectron extraction and collection efficiency,
- timing properties of the signal (using 600 ps long light pulses)
- photoelectron detection efficiency with digital r/o

Several prototypes of small THGEM-based PD's have been built and tested.

Zaragoza, 02/07/2013 - 3rd International Conference on Micro Pattern Gaseous Detectors, MPGD 2013 Fulvio TESSAROTTO

7

electrostatic calculations (and simulations)

Zaragoza, 02/07/2013 - 3rd International Conference on Micro Pattern Gaseous Detectors, MPGD 2013

Fulvio TESSAROTTO

In order to achieve a good photoelectron extraction efficiency we need:

- high value of the electric field at the CsI surface (>1 kV/cm)
- a methane-rich gas mixture to reduce backscattering (> 30% CH₄)

Reasonable geometrical parameters for our application are:

- THGEM_1 (with CsI): thickn. = 0.4 mm, hole diam. = 0.4 mm, pitch = 0.8 mm
- THGEM_2 and THGEM_3: thickn. = 0.8 mm, hole diam. = 0.4 mm, pitch = 0.8 mm

Predictable detector response is provided by choosing rim size < 10 µm

Practical issues:

- THGEMs can be produced by industry (ELTOS Company in Italy, for instance)
- The price is moderate: 1000 holes/Euro.

The response may vary a bit from piece to piece, but is stable and reproducible.

The ion backflow to the Csl is an important item

in the COMPASS RICH-1 environment:

	NOW	<u>FUTURE</u>		
	MWPC	THGEM]	
photoelectron rate	$\approx 10 \text{ Hz/cm}^2$	$\approx 10 \text{ Hz/cm}^2$]	
MIP rate	$\approx 10 \text{ Hz/cm}^2$	$\approx 10 \text{ Hz/cm}^2$		<u>Reverse</u>
gain, i.e. number of ion-electron pairs				<u>Bias !!!</u>
generated per multiplied electron	4×10^{4}	4×10 ⁵		
collected electrons per MIP	20	≈5		
IBFR	$\approx 50\%$	$\approx 5\%$		
Ni	2×10^{4}	2×10^{4}		GOAL !!!
ion bombardment rate at the				
photocathode (from MIP and photoelectrons)	4.2×10 ⁶ Hz/cm ²	1.2×10 ⁶ Hz/cm ²		

NOTE: we normalize to the total ionization

typical charge sharing for THGEM-based PD

drift

field values optimization could reduce IBF by a factor 2

Several attempts to solve the IBF problem

path width < 0.1 mm: may get damaged by sparks

dedicated extra electrode

The "Flower" THGEM

Coupling different geometries: THGEM-1 (red holes) and THGEM-2 (blue holes)

Identical THGEMS: aligned and staggered

- 1) A 300x300 mm2 active area prototype was built and tested at CERN T10 beam
- 2) The effect of the "inverse drift field" on charged particles was verified
- 3) The problem of non uniform gain studied: thickness uniformity improvement
- 4) New production procedure introduced to improve THGEM quality
- 5) New hybrid THGEM+Micromegas detector architecture investigated
- 6) COMPASS RICH-1 upgrade project matured and received approval

COMP-RICH Test Beam

PS T10 beam line 5/11/2012 – 25/11/2012 <u>Single User</u> <u>Triple THGEM 300x300 (576 pads); 2 Triple 30x30, 1 MWPC, 1 MAPMT</u> trigger system, Č radiators, Analog & Digital r/o, COMPASS-like DAQ, ...

Triple THGEM 30 mm x 30 mm

Small prototypes: "studies of principle":

Detector response to ionizing particles (beam mips)

Check the "Reverse Bias effect"

Measure the effective photon detection efficiency as function of the drift field in single photon mode

Detector response to mip

Drift scan with 0.8fC threshold with Beam in Detector

Triple THGEM 300 mm x 300 mm

Layer	Pitch / mm	Ø _{hole} / mm	Thickness / mm	RIM / μm
THGEM1	0.8	0.4	0.4	< 5
THGEM2	0.8	0.4	0.8	< 5
THGEM3	0.8	0.4	0.8	< 5

Detector and electronics

Not always straightforward

Zaragoza, 02/07/2013 - 3rd International Conference on Micro Pattern Gaseous Detectors, MPGD 2013 Fulvio TESSAROTTO 22

Conical fused silica radiator

A remotely controlled movable interceptor allows for changing the number of photons in the corona

Gain of the 300x300 at the Test Beam

THGEM gain: large versus small

The 300 x 300 mm² chamber provided the <u>same</u> <u>response</u> of the small ones (30 x 30 mm²), but <u>it could not reach the same maximum gain</u> Max GAIN small / large = 10 If best small assumed

How to investigate the problem?

After the Test beam, we decided to compare "large" and "small" on the same footing: - produce both on the very same pcb and test them together, under the same conditions.

But ... the new pieces did not stand HV

THGEM production, after drilling

, at ELTOS : polishing, brushing (pomice powder), microetching then, at CERN workshop (Rui), brushing etc.

Irregularities are gone, but still the Max V_{bd} is far from Paschen's curve ... related to surface irregularities ? TESSAROTTO Fulvio

New THGEM treatment in Trieste

- 1. polishing (Hinrichs Pumice Powder)
- 2. cleaning with high pressure water to remove all pumice residuals
- 3. <u>ultrasonic bath</u> (~1 h) @ 50-60 °C in Sonica PCB solution (pH11)
- 4. washing with demineralized water plus oven at 180 °C for 24 h

initial

final

Zaragoza, 02/07/2013 - 3rd International Conference on Micro Pattern Gaseous Detectors,

MPGD 2013 Fulvio TESSAROTTO 30

Size effect in the protocol (no trip for 30")? There is no correction for the surface -> under investigation

The procedure works for standard 300

THGEM gain: large versus small

Maximum ΔV scan with & without source

	А	В	С
1		1690 (1540)	
2		1810 (1610)	
3		1660 (1570)	
4	1470 (1410)	1470 (1410)	1470 (1410)
5	1510 (1490)	1510 (1500)	1510 (1500)
6	1590 (1580)	1590 (1550)	1590 (1500)

Without source (With Source)

Ar/CO2 : 70-30%

Gain measurement @ highest ∆V of the sectors

	А	В	С
1			
2		1137	
3			
4			
5	312	335	350
6	581	474	

work in progress

Local characterization of the sectors

Gain uniformity and thickness uniformity

Zaragoza, 02/07/2013 - 3rd International Conference on Micro Pattern Gaseous Detectors, MPGD 2013 Fulvio TESSAROTTO 35

We decided to measure pcb thickness

Mitutoyo digital micrometer

"aligned" sphere to sphere contact: the THGEM is inserted here and the upper sphere is lowered down until it touches the piece.

Zaragoza, 02/07/2013 - 3rd International Conference on Micro Pattern Gaseous Detectors, MPGD 2013 Fulvio TESSAROTTO 36

40 cm internal space

25 points/piece (reading in microns)

Zaragoza, 02/07/2013 - 3rd International Conference on Micro Pattern Gaseous Detectors, MPGD 2013 Fulvio TESSAROTTO

37

Relative variations are guite different

Zaragoza, 02/07/2013 - 3rd International Conference on Micro Pattern Gaseous Detectors, MPGD 2013 Fulvio TESSAROTTO

38

Relative variations are guite different

39

Same voltage on all sectors: GAIN Max/Min = 1.6

THGEM production using non pcb material

Different material:

Thickness: 0.8 mm

Permaglas (from RESARM, Belgim), machinable (~ Stesalite)

Thickness: 1 mm

- Machining foreseen to increase thickness uniformity
- Cu layer could not be easily glued with standard pre-preg
- Glueing done by Rui de Olivera.

Hybrid THGEM + Micromegas PD

Very promising hints

channels

Next steps

- A first resistive anode produced by Rui obtained modifying an existing anode and using lithographic masks already available (useful surface: 100 x 100 mm²)
- Mesh prepared at Seritech

beam

radiator

gas: C_4F_{10}

pipe

INFN

Istituto Nazionale Fisica Nucleare

COMPASS RICH-1 PD upgrade

Foreseen for 2016-2017

New PD's

- THGEMs represent a good choice for single UV photon detectors
- Many aspects have been validated and understood using small size prototypes:
- 300x300 mm² active area PD built and tested
- Major progress toward a full scale prototype for COMPASS
- Hybrid THGEM + Micromegas PD very promising
- **RICH-1** upgrade mature and approved