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Motivation 

Problem with gas filled proportional chambers  Sparking induced by heavily ionizing particles 

•Limitations on rate operation 

•Reduction of the detector life time 

•Risks of damage  of the readout electronics 

 

Possible solutions: 

•Resistive foil on top of anode plane 

•Resistive strips above readout à la MAMMA 

•Gridpix: layer of amorphous silicon deposited on the chip 

Piggyback resistive Micromegas        Attié et al. , JINST 8 P05019  
  
inspired by similar work with PPAC by M. Kocsisa et al., NIMA 563 (2006) 172–176 
 
new approach where a  thin resistive layer is  desposited on an adequate  insulator 



Concept 
• Separation of the amplification structure and the readout plane 

Resistive thin layer  
(1 MΩ /□ to 100 GΩ /□)  
  

• Signal is transmitted by capacitive coupling to the readout plane 

• Optimisation of the induced signal : tinsulator << tgas εinsulator/εgas  

•  εinsulator  should be as high as possible  (first prototype alumina with ε~10 ) 

Standard bulk  structure 

Insulator 
 (Ceramic substrate~100-500 µm) 

Readout plane 



Why « Piggyback »? 
 
McGraw-Hill Science & Technology Dictionary: 
piggyback board 
 
A small printed circuit board that plugs into another circuit board in order to enhance its capabilities 

Piggyback (transportation), something that is riding on the back of 
something else 
 
piggy-back ['pɪgɪbæk] nombre to give sb a piggy-back ride, llevar a 
alguien a caballito/a cuestas 
 
piggyback adv informal (riding on sb's back)sur le dos (de qqn) loc adv 
 
piggyback n (ride on sb's back) στους ώμουςκαβάλα ουσ.θηλ.  
 
piggyback n (ride on sb's back)l'andare a cavalcioni di qn, l'andare in 
spalla a qn nm 
 
to give sb a piggyback   jn huckepack nehmen  
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First  set-up  

3 detectors with active area: 3×3 cm2 

1 cm drift, 128 µm amplification gap, 20 µm of RuO2 with  100 MΩ/□,  ceramic layer 300 µm 
 

Argon + 5%Iso and Ne + 5% Ethane and   a standard buk in Argon + 5%Iso  

 
 

-HVdrift 

-HVresist 

Ground 

-HVamp 



First experimental results 

Ar+ 5% Iso Ne+ 5% Ethane 



First experimental results 
Checking possibles looses by the ceramic layer: signal entirely transmitted  

Test with a 252Cf  (fission fragments signals)  reading simultaneously mesh and anode 

Amplitude within 5% 
 
Same rise time for both polarities 



Rate capability 

X ray generator tests Drift 0.5 cm 
 

Gain Stability better than 2% 
 

With higher rates=> the gain drops as a function of flux 
 
Gain dependence with rate depends on the resistivity and the capacitance chosen. 
 



Simulation of charge diffusion over the resistive top plate 

Charge diffusion relation for a given charge Q following a Gaussian  distribution with width w: 

M. Dixit  NIM A 581 (2007) 254 

Extrapolation to the case of a continuos current flow: 

Integral will be calculated by adding charge contributions at each time interval n and  describing the gain:  

Va anode potential 

R0 radius of the region 

Ne number of electrons 

r  interaction rate 

Rate= 100 kHz/mm2 
100 MΩ /□ 
1 pF/mm2 
 



Simulation of charge diffusion over a resistive 
plate 

Lower values of the 
resistivity  extend the 
plateau behaviour 



Simulation of charge diffusion over a resistive 
plate 

Agreement in the general tendency 
Differences could be due to grounding configurations, resistivity values and homogeneity 



CMOS chip readout 
Medipix2/Timepix 
CMOS chip 
256×256 square pixels of 55 µm side each 
 
To be used with MPGD the MPGD needs to be  covered by a layer 
of high resistivity material (amorphous silicon or silicon-rich nitride) 

Set-up with Piggyback 
30×20 mm2 bulk 
Amplification gap 128 µm 
Drift gap 10 mm 

Signal observed on Medipix chip with Ar + 5% Iso 
No damage of the chip during operation at high gain 105 



Second set-up  

6 cm2 

1 cm Due to the detector material (ruthenium 
oxide and ceramic) excellent outgassing 
properties suited for detector operation in 
sealed  mode +HVresist 

Ground 

+HVamp 

Readout 



Second set-up: towards a sealed detector  

G
ai

n
  

Ar+5% Iso 



Detector chamber glued 
One night oven at 60°C + pumping 
 
Fflushed with gas for only 4 hours 
Stability over 14 days 

Second set-up: towards a sealed detector  



Improved set-up 

•New chamber with fitted ceramic inside 
 
•Chamber in Stainless steel 
 
•Ceramic is sandwiched between two  gaskets 
 
•More robust mechanics and more versatile 
 

Future tests: 

Cycles of heating and gas flow to reduce outgazing 

Stability tests in sealed operation 

Test with different electronics 

 



Conclusions and outlook 

• Floating mesh, Bulk Micromegas, Microbulk, Ingrid and now Piggyback 

• Piggyback resistive Micromegas provides spark protection 

• Detector dissociated from readout plane 

• Can optimise dead space 

• High rate vs resistivity has been studied 

• Test higher values of resistivity, different thickness of ceramic 

• Seal detector is under development 

 


