

<u>A.L.M.Silva</u>, L.F.N.D. Carramate, T. Lopes, C.D.R. Azevedo, J.F.C.A. Veloso

I3N – Physics Department of University of Aveiro, 3810-193 Aveiro, Portugal

THCOBRA structure and Detector Setup

Operation Principle

Operation Principle

2D-Imaging

Old THCOBRA

• New THCOBRA: thinner anodes

≈ 40 µm

TOPs

Gain as a function of the V_{AC}: NEW THCOBRA

Anodes

The gain in the TOPs is correspondent to the induced charge collected.

The increase of the gain is more evident with the V_{AC} increase than with the V_{CT}

OLD vs. NEW THCOBRA

• Gain as a function of the V_{AC}

• Gain as a function of the V_{CT}

Gain in the New THCOBRA increases faster than in the Old THCOBRA

Gain Stability and Count Rate : NEW THCOBRA

count rates ≈ 1 MHz/mm² gains > 5x10³ small variations on the gain occur • Gain Stability

 Very good operation stability count rate ≈ 2 MHz/mm² gains >10³

Kr

20

Position (mm)

-10

-20

20

Position (mm)

-20

20

10

Position (mm)

-10

-20

-20

-10

-20

-20

-10

0

Position (mm)

0

Position (mm)

0

Position (mm)

-10

Cluster distribution as a function of the photon energy for different gases

Spatial Resolution

Energies below 3 keV → spatial resolution limited by the low SNR achieved.
Energies above 10 keV → spatial resolution limited by the photoelectron range in Ne/5%CH4.

THCOBRA FOR IMAGING PURPOSES 2D-Imaging example X-RAY TUBE OPERATION X-ray transmission image 5 kV 0.27 mA BUTTERFLY M=3.8 M=2.5 5 mm

Lower energy is needed to achieve a better image contrast

10 mm

Further studies on the position-sensitive

Computed Tomography System

Acquisition synchronized with rotational step motor:
0.9^o rotation step (400 views)

Computed Tomography Images

- Time of acquisition: 10 s/view 400 views
- Low statistic

- •THCOBRA detector shows very good potentialities for X-ray imaging operation. For the THCOBRA:
- -Single photon counting capability
- -Energy resolution of about 22% @ 5.9 keV
- -Good energy linearity
- -Sensitive areas can exceed 10x10cm²
- -A gain close to 10⁵ was achieved
- -The 2D-THCOBRA operation shows to be very stable in terms of gain.
- Spatial resolution limited by the photoelectron range (Degrad)

Position resolution depends on the gas mixture and on the energy range For the present case

- Low energy X-ray photons→main limiting factor is the SNR;
- Above 10 keV \rightarrow strongly limited by the photoelectron range in Ne/5%CH4
- Other heavy noble gases/mixtures (Xe, Kr, Xe50%/Kr50%) will be considered to reduce the photoelectron range and increase the position resolution for higher x-ray energies.