HL-PLC Glossary Update and additional definitions

Glossary and Definitions

Glossary and Definitions

 $β^*$: Optical β-function at the IP. η: Machine slip factor. η_D: Normalized dispersion: $η_D = D/\sqrt{β}$, where D is the machine dispersion. γ: Optic gamma function: $γ(s) = (1 + α^2(s))/β(s)$ where β(s) is the optical b

Optic gamma function: $\gamma(s) = (1 + \alpha^2(s))\beta(s)$ where $\beta(s)$ is the optical betatron function along the machine and $\alpha(s) = \frac{d\beta}{2 ds}$.

 γ_r :

The relativistic gamma factor.

abort gap:

Area without any bunches in the bunch train that fits the time required for building up the nominal field of the LHC dump kicker.

arc:

The part of the ring occupied by regular half-cells. Each arc contains 46 half cells. The arc does not contain the dispersion suppressor.

arc cell:

It consists of two arc half-cells and presents the basic period of the optic functions.

arc half-cell:

Periodic part of the LHC arc lattice. Each half-cell consists of a string of three twin aperture main dipole magnets and one short straight section. The cryo magnets of all arc half-cells follow the same orientation with the dipole lead end pointing upstream of Beam 1 (downstream of Beam 2).

batch:

PS batch:

Train of 72 bunches that is injected into the SPS in one PS to SPS transfer. SPS batch:

Train of 4×72 or 3×72 bunches that is injected into the LHC in one SPS to LHC transfer.

Beam 1 and Beam 2:

Beam 1 and Beam 2 refer to the two LHC beams. Beam 1 circulates clockwise in Ring 1 and Beam 2 circulates counter clockwise in Ring 2. If colors are used for HL-PLC Glossary & Definitions based on LHC Design report:

https://espace.cern.ch/HiLumi/PLC/SiteAssets/LHC_ Glossary_high_resolution.pdf

Progressing HL-LHC Design (and future operation) requires maintenance/extension of glossary and definitions to ensure coherence across activities + prepare future integration into existing Layout Database

Proposal for additional definitions to be added to the existing glossary (if endorsed today)

Additional definitions – 1/3

Event pile-up 'μ':

Number of visible inelastic proton-proton interactions in a given bunch crossing

• Average pile-up:

Mean value of the pile-up over a fill (averaged over all bunch crossings)

• Peak pile-up:

Maximum pile-up in any bunch crossing at any time (usually at the start of the fill)

Additional definitions - 2/3

• Peak average pile-up:

Mean pile-up at the beginning of the fill. It corresponds to the peak luminosity of the fill. In practice, it is determined as the maximum of the pile-up values obtained by averaging over all bunch crossings within time intervals of typically one minute

• Luminous region:

The 3-dimensional distribution of the collision event vertices

• Average pile-up density:

Number of inelastic proton-proton interactions in a given bunch-crossing divided by the size of the luminous region in Z

Additional definitions - 3/3

• Hourglass effect 'H':

Luminosity loss due to longitudinal modulation of beta function over the length of the bunch for small β^*

- Geometric luminosity reduction factor due to beam offset 'R': Reduced beam overlap due to transversal offset of collisions, frequently used for reduction of luminosity (leveling) and VdM scans
- Luminosity reduction factor due to crossing angle 'S': Reduced beam overlap due to tilted bunch shape due to crossing angle
- Total luminosity reduction factor 'F' = R*H*S
- Piwinsky parameter: Parametrisation of reduced beam overlap due to finite crossing-angle

- Definition of machine availability requires to clearly delineate normal operational cycle from faults, downtime, technical stops, MDs / special physics runs, etc.
- Assessing fault/downtime of the machine not obvious (need dedicated tools to identify blocking fault,..)
- Following several discussions, LHC operation and the Availability Working Group (AWG) [<u>Evian 2012</u>] endorse to adopt the following simple definitons having the aim to
 - Allow for comparison of data sets (operation years/runs, etc...)
 - Allow an easy calculation/implementation of definitions with current and future data (on-line statistics)
 - Allow for luminosity predictions for post LS1 and HL-LHC [HL-LHC:

Integrated Luminosity and Availability, Simple Models for the integrated luminosity?

Courtsey B.Todd, J.Wenninger, A.Appoloni, M.Lamont, A.MacPherson

Run Time

Definition: annual time allocated to running with beam Units: days

Run Time

Definition: annual time allocated to running with beam Units: days

t_{rt} = 236 days

markus.zerlauth@cern.ch

Scheduled Physics Time

Definition: annual time allocated to physics (excluding initial beam commissioning, scrubbing, TS,recovery from TS, MDs, special physics)Units: days

markus.zerlauth@cern.ch

Scheduled Physics Time

Definition: annual time allocated to physics Units: days

 t_{spt} = 190.5 days

Physics Efficiency

according to this paper

Machine Availability

"without fault preventing operation with beam"

Definition: time when machine is in a state allowing operations to take beam and run through nominal physics cycle, versus run time Units: scalar [%]

according to this paper

Turnaround time

• Turnaround time [h]:

Time between the end of one and the start of the next physics run / data taking by the experiments (delimited by the loss of beam presence/beam dump back to declaration of STABLE_BEAMS)

Recovery Time

• Recovery time [h]:

Time between the end of one and the readiness for injection of new particles of the next (delimited by the loss of beam presence/beam dump and resuming of the normal operational cycle)

Fin

Additional definitions - 4/7

• Run Time [days]:

Calendar time allocated to running of the LHC with beam, excluding technical stops (TS)

• Scheduled Physics Time [days]:

Calendar time allocated to production of physics (excluding commissioning, TS, MDs, special runs)

= Run Time – MDs – special runs

	Apr				May					June			
Wk	14	15	16	17	18	19	20	21	22	23	24	25	26
Mo	2	Easter g	16	23	30	1	14	21	Whit 28	4	11	90 m [12 h]	25
Tu					1st May								
We				T51			Note and						TS2
Th							[48 h]					MD	
Fr	G. Friday												
Sa													
Su			MD										

Additional definitions - 5/7

Physics efficieny [%]:

Fraction of calendar time in STABLE_BEAMS divided by the scheduled Physics time

• Machine availability [%]:

Fraction of calendar time in which the machine is ready to accept and accelerate particles

 Note: Meaningful definitons of Machine efficiency and machine downtime require inclusion of beam parameters/operational envelope, respectively an appropriate tracing mechanism of blocking failures for operation [AWG work in progress for (LHC) fault tracker] -> Postponed as not needed for high level statistics

Lost Physics

Lost Physics = stable beams cut short by faults

Average time in physics when reaching End of Fill = 9 hours ... good turnaround = 3 hours

if fill did not have 9 hours stable beams : dump cause is assigned up to 3 hours lost physics

Fault Time

Using consistent definitions – an example

