On finite discrete subgroups of SU(3)and lepton mixing parameters

C. Hagedorn

EC 'Universe', TUM, Germany

H/Meroni/Vitale: 1307.5308 [hep-ph]

"Electroweak symmetry breaking, flavour and dark matter after the Higgs discovery", 16.12.2013-18.12.2013, GGI, Arcetri, Italy

Outline

- introduction: lepton mixing
- mixing from flavor symmetry G_f
- overview over SU(3) subgroups
- analysis of patterns from $G_f = \Sigma(n\varphi)$
- comments on patterns from groups of type (C) and (D)
- conclusions

Parametrization of lepton mixing

Parametrization (PDG)

$$U_{PMNS} = \tilde{U} \operatorname{diag}(1, e^{i\alpha/2}, e^{i(\beta/2+\delta)})$$

with

$$\tilde{U} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

and $s_{ij} = \sin \theta_{ij}$, $c_{ij} = \cos \theta_{ij}$ Jarlskog invariant J_{CP}

$$J_{CP} = \operatorname{Im} \left[U_{PMNS,11} U_{PMNS,13}^* U_{PMNS,31}^* U_{PMNS,33} \right]$$
$$= \frac{1}{8} \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13} \sin \delta$$

- p. 3/60

Experimental results on lepton mixing
Latest global fits NH [IH] (*Capozzi et al.* (13))
best fit and
$$1 \sigma$$
 error 3σ range
 $\sin^2 \theta_{13} = 0.0234[9]^{+0.0022[1]}_{-0.0018[21]} = 0.0177[8] \le \sin^2 \theta_{13} \le 0.0297[300]$
 $\sin^2 \theta_{12} = 0.308^{+0.017}_{-0.017} = 0.259 \le \sin^2 \theta_{12} \le 0.359$
 $\sin^2 \theta_{23} = \begin{cases} 0.425[37]^{+0.029[59]}_{-0.027[9]} = 0.357[63] \le \sin^2 \theta_{23} \le 0.641[59] \end{cases}$
 $\delta = 1.39[5] \pi^{+0.33[24] \pi}_{-0.27[39] \pi} = 0 \le \delta \le 2 \pi$
 α , β unconstrained

Experimental results on lepton mixing

Latest global fits NH [IH] (Capozzi et al. ('13))

$$||U_{PMNS}|| \approx \begin{pmatrix} 0.82 & 0.55 & 0.15 \\ 0.40[39] & 0.65 & 0.64[5] \\ 0.40[2] & 0.52 & 0.75[4] \end{pmatrix}$$

and no information on Majorana phases

 \Downarrow Mismatch in lepton flavor space is large!

Origin of lepton mixing

- interpret this mismatch in lepton flavor space as mismatch of residual symmetries G_{ν} and G_{e}
- if we want to predict lepton mixing, we have to derive this mismatch
- let us assume that there is a symmetry, broken to G_{ν} and G_{e}
- this symmetry is in the following a

finite, discrete, non-abelian symmetry G_f

[Masses do not play a role in this approach.]

Idea:

Derivation of the lepton mixing from how G_f is broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_e into G_f

Idea:

Derivation of the lepton mixing from how G_f is broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_e into G_f

 G_f

 $G_{\nu} = Z_2 \times Z_2$ (Majorana) $G_{\nu} = Z_M$ with $M \ge 3$ (Dirac) charged leptons $G_e = Z_N$ with $N \ge 3$

 $G_{\nu} = Z_2 \times Z_2$ (Majorana) $G_{\nu} = Z_M$ with $M \ge 3$ (Dirac) charged leptons $G_e = Z_N$ with $N \ge 3$

Further requirements

 G_f

- two/three non-trivial angles \Rightarrow irred. 3-dim. rep. of G_f
- fix angles through G_{ν} , $G_e \Rightarrow 3$ families transform diff. under G_{ν} , G_e

• neutrino sector: $Z_2 \times Z_2$ or Z_M , $M \ge 3$, preserved and generated by

$$\begin{aligned} \Omega^{\dagger}_{\nu}\,Z_{i}\,\Omega_{\nu} &= Z^{diag}_{i} \ , \ i=1,2 \\ \text{or} \qquad \Omega^{\dagger}_{\nu}\,Z\,\Omega_{\nu} &= Z^{diag} \end{aligned}$$

• charged lepton sector: Z_N , $N \ge 3$, preserved and generated by

$$\Omega_e^{\dagger} \, Q_e \, \Omega_e = Q_e^{diag}$$

• neutrino sector: $Z_2 \times Z_2$ or Z_M , $M \ge 3$, preserved

$$Z_{i}^{T} m_{\nu} Z_{i} = m_{\nu} , \quad i = 1, 2$$

or $Z^{\dagger} m_{\nu}^{\dagger} m_{\nu} Z = m_{\nu}^{\dagger} m_{\nu}$

• charged lepton sector: Z_N , $N \ge 3$, preserved

 $Q_e^{\dagger} m_e^{\dagger} m_e Q_e = m_e^{\dagger} m_e$

• neutrino sector: $Z_2 \times Z_2$ or Z_M , $M \ge 3$, preserved

 $\begin{array}{l} \rightarrow \text{ neutrino mass matrix } m_{\nu} \text{ fulfills} \\ \Omega_{\nu}^{T} m_{\nu} \Omega_{\nu} \quad \text{is diagonal} \\ \text{or} \quad \Omega_{\nu}^{\dagger} m_{\nu}^{\dagger} m_{\nu} \Omega_{\nu} \quad \text{is diagonal} \end{array}$

• charged lepton sector: Z_N , $N \ge 3$, preserved

 \rightarrow charged lepton mass matrix m_e fulfills

 $\Omega_e^{\dagger} m_e^{\dagger} m_e \Omega_e$ is diagonal

 $U_{PMNS} = \Omega_e^{\dagger} \Omega_{\nu}$

- 3 unphysical phases are removed by $\Omega_e \rightarrow \Omega_e K_e$
- neutrino masses are made real and positive through $\Omega_{
 u} o \Omega_{
 u} K_{
 u}$
- permutations of columns of Ω_e , Ω_{ν} are possible: $\Omega_{e,\nu} \to \Omega_{e,\nu} P_{e,\nu}$

\Downarrow

Predictions:Mixing angles up to exchange of rows/columns J_{CP} up to signMajorana phases undetermined

Discrete subgroups of SU(3)

- discrete subgroups of SU(3) can be divided in five categories (*Miller et al. ('16), Fairbairn et al. ('64), Grimus/Ludl ('11)*)
- two of them not interesting, since they have no irred. 3-dim. reps.
- groups of type (C) are of the form $(Z_m \times Z_n) \rtimes Z_3$ these groups can be viewed as "generalizations" of $\Delta(3n^2)$
- groups of type (D) are of the form $(Z_m \times Z_n) \rtimes S_3$ these groups can be viewed as "generalizations" of $\Delta(6n^2)$
- "exceptional" groups $\Sigma(60)(\times Z_3)$, $\Sigma(168)(\times Z_3)$ and $\Sigma(n\varphi)$ with $\varphi = 3$

Groups $\Sigma(n\varphi)$

- groups with $\varphi = 1$: $\Sigma(36)$, $\Sigma(72)$, $\Sigma(216)$ and $\Sigma(360)$; these are subgroups of SU(3)/C (*C*: center)
- groups with $\varphi = 3$: $\Sigma(36 \times 3)$, $\Sigma(72 \times 3)$, $\Sigma(216 \times 3)$ and $\Sigma(360 \times 3)$; these are subgroups of SU(3)
- the groups $\Sigma(60) \simeq A_5$ and $\Sigma(168) \simeq PSL(2, \mathbb{Z}_7)$; they are subgroups of SU(3)/C and SU(3)

Groups $\Sigma(n\varphi)$

- groups with $\varphi = 1$: $\Sigma(36)$, $\Sigma(72)$, $\Sigma(216)$ and $\Sigma(360)$; these are subgroups of SU(3)/C (*C*: center)
- groups with $\varphi = 3$: $\Sigma(36 \times 3)$, $\Sigma(72 \times 3)$, $\Sigma(216 \times 3)$ and $\Sigma(360 \times 3)$; these are subgroups of SU(3)
- the groups $\Sigma(60) \simeq A_5$ and $\Sigma(168) \simeq PSL(2, Z_7)$; they are subgroups of SU(3)/C and SU(3)

Groups $\Sigma(72 \times 3)$, $\Sigma(216 \times 3)$, $\Sigma(360 \times 3)$ and $\Sigma(168)$ might be interesting, because a version of minimal flavor violation in quark sector could be realized

(Zwicky, Fischbacher ('09))

- group with 108 elements
- it has four pairs of $\mathbf{3^{(p)}}$ and $(\mathbf{3^{(p)}})^{\star}$, p=0,1,2,3
- generators a, v and z (Grimus/Ludi ('10))

 $a^{3} = 1$, $v^{4} = 1$, $z^{3} = 1$, $av^{-1}zv = 1$, $avz^{-1}v^{-1} = 1$, $(az)^{3} = 1$

• generators in $\mathbf{3}^{(\mathbf{0})}$ ($\omega = e^{2\pi i/3}$)

$$a = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} , \quad v = \frac{1}{\sqrt{3}i} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix} , \quad z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}$$

- group with 108 elements
- it has four pairs of $\mathbf{3^{(p)}}$ and $(\mathbf{3^{(p)}})^{\star}\text{, } p=0,1,2,3$
- generators a, v and z (Grimus/Ludl ('10))

 $a^{3} = 1$, $v^{4} = 1$, $z^{3} = 1$, $av^{-1}zv = 1$, $avz^{-1}v^{-1} = 1$, $(az)^{3} = 1$

• generators in $\mathbf{3}^{(\mathbf{p})}$

$$a , i^{\mathrm{p}}v , z$$
 with $\mathrm{p}=0,1,2,3$

elements in 3^(p) can be written as

 $g = \omega^o z^{\zeta} a^{\alpha} v^{\chi}$ with $o, \zeta, \alpha = 0, 1, 2, \chi = 0, 1, 2, 3$

- p. 18/60

abelian subgroups

 Z_2 , Z_3 , Z_4 , Z_6 , Z_{12} and $Z_3 \times Z_3$

- especially no Klein subgroup $Z_2 \times Z_2$ \Rightarrow neutrinos have to be Dirac particles
- 30 elements g are represented by matrices with degenerate eigenvalues
- analysis of all combinations G_e and G_{ν} shows
 - combination $G_e = Z_3$ and $G_\nu = Z_3$ not interesting
 - one pattern for $G_e = Z_3$ and $G_\nu = Z_4$ or $G_\nu = Z_{12}$
 - one pattern for $G_e = Z_4$ or $G_e = Z_{12}$ and $G_\nu = Z_4$ or $G_\nu = Z_{12}$

• pattern for $G_e = Z_3$ and $G_\nu = Z_4$ or $G_\nu = Z_{12}$

$$||U_{PMNS}|| = \frac{1}{\sqrt{2(3+\sqrt{3})}} \begin{pmatrix} 1+\sqrt{3} & \sqrt{2} & 0\\ 1 & \sqrt{2+\sqrt{3}} & \sqrt{3+\sqrt{3}}\\ 1 & \sqrt{2+\sqrt{3}} & \sqrt{3+\sqrt{3}} \end{pmatrix}$$

• pattern for $G_e = Z_3$ and $G_\nu = Z_4$ or $G_\nu = Z_{12}$

$$||U_{PMNS}|| \approx \left(\begin{array}{ccc} 0.888 & 0.460 & 0\\ 0.325 & 0.628 & 0.707\\ 0.325 & 0.628 & 0.707 \end{array}\right)$$

 $\Rightarrow \sin^2 \theta_{12} \approx 0.211$ and θ_{23} maximal and $\theta_{13} = 0$

- comments
 - fit to data not so good, $\chi^2 \approx 151.5$
 - has been mentioned in analysis of $\Delta(27)$ and CP (Nishi ('13))

• pattern for $G_e = Z_4$ or $G_e = Z_{12}$ and $G_\nu = Z_4$ or $G_\nu = Z_{12}$

$$||U_{PMNS}|| = \frac{1}{2\sqrt{2}} \begin{pmatrix} \sqrt{3} + \sqrt{3} & \sqrt{3} & \sqrt{2} - \sqrt{3} \\ \sqrt{2} & \sqrt{3} - \sqrt{3} & \sqrt{3} + \sqrt{3} \\ \sqrt{3} - \sqrt{3} & \sqrt{2} + \sqrt{3} & \sqrt{3} \end{pmatrix}$$

• pattern for $G_e = Z_4$ or $G_e = Z_{12}$ and $G_\nu = Z_4$ or $G_\nu = Z_{12}$

$$||U_{PMNS}|| \approx \left(\begin{array}{ccc} 0.769 & 0.612 & 0.183 \\ 0.500 & 0.398 & 0.769 \\ 0.398 & 0.683 & 0.612 \end{array}\right)$$

 $\Rightarrow \sin^2 \theta_{12} \approx 0.388$, $\sin^2 \theta_{23} \approx 0.612$ and $\sin^2 \theta_{13} \approx 0.033$

- comments
 - better fit to data, $\chi^2 \approx 69.1$
 - $J_{CP} = 0$ although $\theta_{13} \neq 0$
 - second solution with $\sin^2 \theta_{23} \approx 0.388$

- group with 216 elements
- it has four pairs of $\mathbf{3^{(p_1,p_2)}}$ and $(\mathbf{3^{(p_1,p_2)}})^\star,\,p_1,p_2=0,1$
- generators a, v, z and x (Grimus/Ludl ('10))
- abelian subgroups

 Z_2 , Z_3 , Z_4 , Z_6 , Z_{12} and $Z_3 \times Z_3$

- 30 elements g reveal degenerate eigenvalues
- analysis of all combinations G_e and G_{ν} shows
 - only one pattern related to this group
 - this pattern arises from G_e , G_{ν} being Z_4 or Z_{12}

• pattern for $G_e = Z_4$ or $G_e = Z_{12}$ and $G_\nu = Z_4$ or $G_\nu = Z_{12}$

$$||U_{PMNS}|| = \frac{1}{2\sqrt{2}} \begin{pmatrix} \sqrt{3} + \sqrt{3} & \sqrt{4} - \sqrt{3} & 1\\ \sqrt{2} & \sqrt{3} + \sqrt{3} & \sqrt{3} - \sqrt{3}\\ \sqrt{3} - \sqrt{3} & 1 & \sqrt{4} + \sqrt{3} \end{pmatrix}$$

• pattern for $G_e = Z_4$ or $G_e = Z_{12}$ and $G_\nu = Z_4$ or $G_\nu = Z_{12}$

$$||U_{PMNS}|| \approx \left(\begin{array}{cccc} 0.769 & 0.532 & 0.354 \\ 0.500 & 0.769 & 0.398 \\ 0.398 & 0.354 & 0.846 \end{array}\right)$$

 $\Rightarrow \sin^2 \theta_{12} \approx 0.324$, $\sin^2 \theta_{23} \approx 0.181$ and $\sin^2 \theta_{13} = 0.125$

- comments
 - bad fit to data, $\chi^2 > 1000$
 - but interesting: $J_{CP} \neq 0$, $|J_{CP}| = \sqrt{3}/32$

- group with 648 elements
- it has three pairs of $\mathbf{3}^{(\mathbf{p})}$ and $(\mathbf{3}^{(\mathbf{p})})^{\star}$, $\mathbf{p} = 0, 1, 2$ which are faithful
- generators a, v, z and w (Grimus/Ludi ('10))
- abelian subgroups

 $Z_2, Z_3, Z_4, Z_6, Z_9, Z_{12}, Z_{18} \text{ and } Z_3 \times Z_3, Z_3 \times Z_9$

• 102 elements *g* reveal degenerate eigenvalues

- analysis of all combinations G_e and G_{ν} shows
 - only one pattern which fits quite well, $\chi^2 \approx 28.3$
 - patterns with larger χ^2 have $J_{CP} \neq 0$
 - several patterns with $\theta_{12,23}$ OK, but θ_{13} too large
 - pattern with $\chi^2 \approx 10.6$ leads to group with 162 elements

• pattern with smallest χ^2 : $G_e = Z_{18}$ and $G_\nu = Z_4$ or $G_\nu = Z_{12}$

$$||U_{PMNS}|| = \frac{1}{2\sqrt{2(3+\sqrt{3})}} \begin{pmatrix} \sqrt{2}(2+\sqrt{3}) & \sqrt{2(3+\sqrt{3})} & -1+\sqrt{3} \\ \sqrt{6} & \sqrt{2(3+\sqrt{3})} & 3+\sqrt{3} \\ 2 & 2\sqrt{3+\sqrt{3}} & 2\sqrt{2+\sqrt{3}} \end{pmatrix}$$

• pattern with smallest χ^2 : $G_e = Z_{18}$ and $G_\nu = Z_4$ or $G_\nu = Z_{12}$

$$||U_{PMNS}|| \approx \left(\begin{array}{ccc} 0.858 & 0.500 & 0.119\\ 0.398 & 0.500 & 0.769\\ 0.325 & 0.707 & 0.628 \end{array}\right)$$

 $\Rightarrow \sin^2 \theta_{12} \approx 0.254$, $\sin^2 \theta_{23} = 0.600$ and $\sin^2 \theta_{13} \approx 0.014$

- comments
 - good fit, $\chi^2 \approx 28.3$, only $\theta_{12,13}$ a bit too small
 - no CP violation, $J_{CP} = 0$
 - second solution with $\sin^2 \theta_{23} = 0.400$

• pattern with $J_{CP} \neq 0$ and good fit for $\theta_{12,23}$: $G_e = Z_4$ or $G_e = Z_{12}$ and $G_{\nu} = Z_3$

$$||U_{PMNS}|| \approx \left(\begin{array}{ccc} 0.804 & 0.525 & 0.279\\ 0.483 & 0.445 & 0.754\\ 0.346 & 0.726 & 0.595 \end{array}\right)$$

 $\Rightarrow \sin^2 \theta_{12} \approx 0.299$, $\sin^2 \theta_{23} \approx 0.616$ and $\sin^2 \theta_{13} \approx 0.078$

comments

- bad fit of θ_{13} , total χ^2 : $\chi^2 \approx 554.6$
- $|J_{CP}| \approx 0.0417$
- second solution with $\sin^2 \theta_{23} \approx 0.384$

• pattern with $J_{CP} \neq 0$ and good fit for $\theta_{12,23}$: $G_e = Z_{18}$ and $G_{\nu} = Z_{18}$

$$||U_{PMNS}|| = \frac{1}{2\sqrt{3}} \begin{pmatrix} \sqrt{7} & \sqrt{3} & \sqrt{2} \\ \sqrt{3} & \sqrt{3} & \sqrt{6} \\ \sqrt{2} & \sqrt{6} & 2 \end{pmatrix}$$

• pattern with $J_{CP} \neq 0$ and good fit for $\theta_{12,23}$: $G_e = Z_{18}$ and $G_{\nu} = Z_{18}$

$$||U_{PMNS}|| \approx \left(\begin{array}{ccc} 0.764 & 0.500 & 0.408\\ 0.500 & 0.500 & 0.707\\ 0.408 & 0.707 & 0.577 \end{array}\right)$$

 $\Rightarrow \sin^2 \theta_{12} = 0.300$, $\sin^2 \theta_{23} = 0.600$ and $\sin^2 \theta_{13} \approx 0.167$

- comments
 - bad fit of θ_{13} , total $\chi^2 > 3000$
 - $|J_{CP}| \approx 0.0722$
 - second solution with $\sin^2 \theta_{23} = 0.400$

• pattern with $\chi^2 \approx 10.6$, but group $\subset \Sigma(216 \times 3)$: $G_e = Z_3 \& G_\nu = Z_{18}$

$$||U_{PMNS}|| = \frac{1}{\sqrt{6}} \begin{pmatrix} 2c_{18} & \sqrt{2} & 2s_{18} \\ c_{18} - \sqrt{3}s_{18} & \sqrt{2} & \sqrt{3}c_{18} + s_{18} \\ c_{18} + \sqrt{3}s_{18} & \sqrt{2} & \sqrt{3}c_{18} - s_{18} \end{pmatrix} = ||U_{TB} R_{13}(-\pi/18)||$$

and $c_{18} = \cos \pi / 18 \approx 0.985$, $s_{18} = \sin \pi / 18 \approx 0.174$

• pattern with $\chi^2 \approx 10.6$, but group $\subset \Sigma(216 \times 3)$: $G_e = Z_3 \& G_\nu = Z_{18}$

$$||U_{PMNS}|| \approx \left(\begin{array}{cccc} 0.804 & 0.577 & 0.142 \\ 0.279 & 0.577 & 0.767 \\ 0.525 & 0.577 & 0.625 \end{array}\right)$$

 $\Rightarrow \sin^2 \theta_{12} \approx 0.340$, $\sin^2 \theta_{23} \approx 0.601$ and $\sin^2 \theta_{13} \approx 0.020$

- comments
 - good fit, only θ_{12} a bit too large ... but no CP violation
 - second solution with $\sin^2 \theta_{23} \approx 0.399$
 - has tri-maximal mixing

• pattern with $\chi^2 \approx 10.6$, but group $\subset \Sigma(216 \times 3)$: $G_e = Z_3 \& G_\nu = Z_{18}$

$$||U_{PMNS}|| \approx \left(\begin{array}{cccc} 0.804 & 0.577 & 0.142 \\ 0.279 & 0.577 & 0.767 \\ 0.525 & 0.577 & 0.625 \end{array}\right)$$

 $\Rightarrow \sin^2 \theta_{12} \approx 0.340$, $\sin^2 \theta_{23} \approx 0.601$ and $\sin^2 \theta_{13} \approx 0.020$

- comments
 - found in literature for other group (Holthausen et al. ('12));
 very recently, also for group with 162 elements (Holthausen/Lim ('13))
 - structure of patterns also found for groups $\Delta(6n^2)$ (de Adelhart Toorop et al. ('11), King et al. ('13))

$\Sigma(360 imes 3)$

- group with 1080 elements
- it has two pairs of $\mathbf{3}^{(\mathbf{p})}$ and $(\mathbf{3}^{(\mathbf{p})})^{\star}$, $\mathbf{p} = 1, 2$ which are faithful
- generators a, f, h and q (Miller et al. ('16), Fairbairn et al. ('64))
- abelian subgroups

 Z_2 , Z_3 , Z_4 , Z_5 , Z_6 , Z_{12} , Z_{15} and $Z_2 \times Z_2$, $Z_3 \times Z_3$, $Z_2 \times Z_6$

• 138 elements g reveal degenerate eigenvalues

$\Sigma(360 imes 3)$

- analysis of all combinations G_e and G_{ν} shows
 - only one pattern with $\chi^2 < 60$
 - patterns with larger χ^2 have $J_{CP} \neq 0$
 - all patterns for G_e or G_ν being a Klein group have non-zero J_{CP} , but $\chi^2 > 100$ always

$\Sigma(360 imes 3)$

• pattern with smallest χ^2 : $G_e = Z_4$ or $G_e = Z_{12}$ & $G_\nu = Z_4$ or $G_\nu = Z_{12}$

$$||U_{PMNS}|| = \frac{1}{4} \begin{pmatrix} 1+\sqrt{5} & \sqrt{5-\sqrt{3}-\sqrt{5}+\sqrt{15}} & \sqrt{5+\sqrt{3}-\sqrt{5}-\sqrt{15}} \\ \sqrt{5-\sqrt{3}-\sqrt{5}+\sqrt{15}} & \sqrt{8+\sqrt{3}-\sqrt{15}} & \sqrt{3+\sqrt{5}} \\ \sqrt{5+\sqrt{3}-\sqrt{5}-\sqrt{15}} & \sqrt{3+\sqrt{5}} & \sqrt{8-\sqrt{3}+\sqrt{15}} \end{pmatrix}$$

• pattern with smallest χ^2 : $G_e = Z_4$ or $G_e = Z_{12}$ & $G_\nu = Z_4$ or $G_\nu = Z_{12}$

$$||U_{PMNS}|| \approx \left(\begin{array}{cccc} 0.809 & 0.554 & 0.197 \\ 0.554 & 0.605 & 0.572 \\ 0.197 & 0.572 & 0.796 \end{array}\right)$$

 $\Rightarrow \sin^2 \theta_{12} \approx 0.319$, $\sin^2 \theta_{23} \approx 0.341$ and $\sin^2 \theta_{13} \approx 0.039$

- comments
 - θ_{13} not accommodated well, total χ^2 : $\chi^2 \approx 58.0$
 - no CP violation; pattern with $J_{CP} \neq 0$ has $\chi^2 > 100$
 - second solution with $\sin^2 \theta_{23} \approx 0.659$

$\Sigma(360 imes 3)$

• pattern with smallest χ^2 for $G_e = Z_2 \times Z_2$ & $G_\nu = Z_4$ or $G_\nu = Z_{12}$

$$||U_{PMNS}|| = \frac{1}{4} \begin{pmatrix} 1+\sqrt{5} & \sqrt{5+\sqrt{15}-\sqrt{2(4+\sqrt{15})}} & \sqrt{5+\sqrt{3}-\sqrt{5(1+\sqrt{3})}} \\ 2 & \sqrt{2(3+\sqrt{3})} & \sqrt{2(3-\sqrt{3})} \\ -1+\sqrt{5} & \sqrt{5-\sqrt{3}+\sqrt{5}(1-\sqrt{3})} & \sqrt{5+\sqrt{15}+\sqrt{2(4+\sqrt{15})}} \end{pmatrix}$$

• pattern with smallest χ^2 for $G_e = Z_2 \times Z_2$ & $G_\nu = Z_4$ or $G_\nu = Z_{12}$

$$||U_{PMNS}|| \approx \left(\begin{array}{cccc} 0.809 & 0.554 & 0.197 \\ 0.500 & 0.769 & 0.398 \\ 0.309 & 0.319 & 0.896 \end{array}\right)$$

 $\Rightarrow \sin^2 \theta_{12} \approx 0.319$, $\sin^2 \theta_{23} \approx 0.165$ and $\sin^2 \theta_{13} \approx 0.039$

- comments
 - fit for $\theta_{13,23}$ not good, $\chi^2 \approx 148.1$
 - but $|J_{CP}| \approx 0.0313$
 - note $G_e = Z_2 \times Z_2 \Rightarrow$ Dirac neutrinos
 - for Majorana neutrinos, i.e. $G_{\nu} = Z_2 \times Z_2$, $\chi^2 > 500$

- series of subgroups of SU(3) with faithful irred. 3-dim. reps.
- isomorphic to $(Z_n \times Z_n) \rtimes S_3$; described with four generators
- generic form of mixing patterns for Majorana neutrinos

$$U_{PMNS} = U_{TB}R_{13}(\theta)$$

and θ depends on n (King et al. ('13)), i.e. mixing angles are of the form

$$\sin^2 \theta_{12} = \frac{1}{2 + \cos 2\theta}$$
, $\sin^2 \theta_{23} = \frac{1}{2} \left(1 - \frac{\sqrt{3} \sin 2\theta}{2 + \cos 2\theta} \right)$ and $\sin^2 \theta_{13} = \frac{2}{3} \sin^2 \theta$

 $\delta=0\,,\,\pi$

- series of subgroups of SU(3) with faithful irred. 3-dim. reps.
- isomorphic to $(Z_n \times Z_n) \rtimes S_3$; described with four generators
- generic form of mixing patterns for Majorana neutrinos

$$U_{PMNS} = U_{TB}R_{13}(\theta)$$

and θ depends on n (King et al. ('13))

• We conjectured (de Adelhart Toorop et al. ('11))

$$\theta = \frac{\pi}{n} \text{ for } G_e = Z_3 , \ G_\nu = Z_2 \times Z_2$$
$$\theta = \frac{\pi}{3n} \text{ for } G_e = Z_3 , \ G_\nu = Z_2 \times Z_2$$

- series of subgroups of SU(3) with faithful irred. 3-dim. reps.
- isomorphic to $(Z_n \times Z_n) \rtimes S_3$; described with four generators
- generic form of mixing patterns for Majorana neutrinos

$$U_{PMNS} = U_{TB}R_{13}(\theta)$$

and θ depends on n (King et al. ('13))

we conjectured (de Adelhart Toorop et al. ('11)) [for Dirac neutrinos]

$$\theta = \frac{\pi}{2n} \quad \text{for} \quad G_e = Z_3 \quad , \ G_\nu = Z_{2n}$$
$$\theta = \frac{\pi}{6n} \quad \text{for} \quad G_e = Z_3 \quad , \ G_\nu = Z_{2n}$$

- this series of groups contains dihedral groups D_n and relatives
- D_n for certain n can explain Cabibbo angle well (Lam ('07), Blum et al. ('07,'09))
- example n = 8: $\Delta(384)$ (de Adelhart Toorop et al. ('11)) subgroups in up and down quark sectors: Z_{16} & $Z_2 \times Z_2$

$$||V_{CKM}|| = \begin{pmatrix} \cos \pi/16 & \sin \pi/16 & 0\\ \sin \pi/16 & \cos \pi/16 & 0\\ 0 & 0 & 1 \end{pmatrix} \approx \begin{pmatrix} 0.981 & 0.195 & 0\\ 0.195 & 0.981 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

[for leptons: $G_e = Z_3$, $G_\nu = Z_2 \times Z_2$: $\theta = \pi/24$ $\sin^2 \theta_{12} \approx 0.337$, $\sin^2 \theta_{23} \approx 0.424$, $\sin^2 \theta_{13} \approx 0.011$]

- series of subgroups of SU(3) with faithful irred. 3-dim. reps.
- isomorphic to $(Z_n \times Z_n) \rtimes Z_3$; described with three generators; thus mostly useful for Dirac neutrinos
- subgroups of $\Delta(6n^2)$
- generic form of mixing patterns: three entries x_1 , x_2 and x_3 cyclicly permuted; matrix with two independent parameters
- usually $J_{CP} \neq 0$
- examples are $\Delta(12) \simeq A_4$ and $\Delta(27)$: in both cases one gets democratic mixing, i.e. $|x_i| = 1/\sqrt{3}$

Generalizations of $\Delta(3n^2)$ and $\Delta(6n^2)$

- generalizations of $\Delta(3n^2)$: $(Z_m \times Z_n) \rtimes Z_3$; also mostly for Dirac neutrinos
- generalizations of $\Delta(6n^2)$: $(Z_m \times Z_n) \rtimes S_3$; expectation: results very similar to those for $\Delta(6n^2)$ examples which have already been discussed are
 - group $(Z_9 \times Z_3) \rtimes S_3$ with 162 elements, see above
 - group $(Z_{18} \times Z_6) \rtimes S_3$ (Holthausen et al. ('12,'13)) [mixing pattern like for $\Delta(6n^2)$ with n = 9, 18]

Conclusions

- lepton mixing is related to breaking of finite, discrete, non-abelian flavor symmetry down to different residual symmetries G_e and G_ν in charged lepton and neutrino sector
- here focus on groups $\Sigma(n\varphi)$ with $\varphi = 3$
- only very few mixing patterns found which match data well
- usually those with small χ^2 imply no CP violation, $J_{CP} = 0$
- those with larger χ^2 instead predict $J_{CP} \neq 0$

Conclusions

- comprehensive study of all patterns from SU(3) subgroups \Rightarrow goal: understand better how results for mixing patterns and group structure are related (why $J_{CP} = 0$?)
- to be seen whether generalizations can(not) lead to new patterns (especially for Dirac neutrinos)
- study of U(3) subgroups

Thank you for your attention.

Back up

- group with 60 elements
- it has two real faithful irred.3-dim. reps. $3^{(1)}$ and $3^{(2)}$
- generators s and t (Eholzer ('94,'95))
- abelian subgroups
 - Z_2 , Z_3 , Z_5 and $Z_2 \times Z_2$

- analysis of combinations G_e and $G_{\nu} = Z_2 \times Z_2$ shows (de Adelhart Toorop et al. ('11), Lam ('11))
 - only three different patterns, depending on choice of G_e
 - all have $J_{CP} = 0$
 - two lead to $\theta_{13} = 0$ and $\theta_{23} = \pi/4$ (patterns with golden ratio mixing)

• pattern for $G_e = Z_2 \times Z_2$ & $G_\nu = Z_2 \times Z_2$

$$||U_{PMNS}|| = \frac{1}{2} \begin{pmatrix} \phi & 1 & 1/\phi \\ 1/\phi & \phi & 1 \\ 1 & 1/\phi & \phi \end{pmatrix}$$

with
$$\phi = (1 + \sqrt{5})/2$$

• pattern for $G_e = Z_2 \times Z_2$ & $G_\nu = Z_2 \times Z_2$

$$||U_{PMNS}|| \approx \left(\begin{array}{ccc} 0.809 & 0.500 & 0.309\\ 0.309 & 0.809 & 0.500\\ 0.500 & 0.309 & 0.809 \end{array}\right)$$

 $\Rightarrow \sin^2 \theta_{12} \approx 0.276$, $\sin^2 \theta_{23} \approx 0.276$ and $\sin^2 \theta_{13} \approx 0.095$

- comments
 - fit not good, $\chi^2 \approx 1000$
 - no CP violation
 - second solution with $\sin^2 \theta_{23} \approx 0.724$

• example of pattern for $G_e = Z_3$ and $G_\nu = Z_5$

$$||U_{PMNS}|| = \begin{pmatrix} \sqrt{\frac{1}{15}(5+\sqrt{5})} & \sqrt{\frac{1}{15}(5+\sqrt{5})} & \frac{3-\sqrt{5}}{\sqrt{6(5-\sqrt{5})}} \\ \frac{1}{2}\left(1-\sqrt{\frac{1}{15}(5-2\sqrt{5})}\right) & \frac{1}{2}\left(1+\sqrt{\frac{1}{15}(5-2\sqrt{5})}\right) & \sqrt{\frac{1}{15}(5+\sqrt{5})} \\ \frac{1}{2}\left(1+\sqrt{\frac{1}{15}(5-2\sqrt{5})}\right) & \frac{1}{2}\left(1-\sqrt{\frac{1}{15}(5-2\sqrt{5})}\right) & \sqrt{\frac{1}{15}(5+\sqrt{5})} \end{pmatrix}$$

• example of pattern for $G_e = Z_3$ and $G_\nu = Z_5$

$$||U_{PMNS}|| \approx \left(\begin{array}{ccc} 0.695 & 0.695 & 0.188 \\ 0.406 & 0.594 & 0.695 \\ 0.594 & 0.406 & 0.695 \end{array}\right)$$

$$\Rightarrow \sin^2 \theta_{12} = 0.500$$
, $\sin^2 \theta_{23} = 0.500$ and $\sin^2 \theta_{13} \approx 0.035$

- comments
 - two maximal mixing angles
 - no CP violation

$\Sigma(168)$

- group with 168 elements
- it has one pair of faithful complex irred. 3-dim. reps. 3 and 3^{\star}
- generators s and t (Eholzer ('94,'95))
- relevant abelian subgroups

 Z_3 , Z_4 , Z_7 and $Z_2 \times Z_2$

$\Sigma(168)$

• analysis of combinations G_e and $G_{\nu} = Z_2 \times Z_2$ shows

(de Adelhart Toorop et al. ('11))

- four different patterns, depending on choice of G_e
- all patterns have $J_{CP} \neq 0$
- PMNS mixing matrix has several equal elements (up to phase)

$\Sigma(168)$

• pattern for $G_e = Z_2 \times Z_2$ & $G_\nu = Z_2 \times Z_2$

$$||U_{PMNS}|| = \frac{1}{2} \begin{pmatrix} \sqrt{2} & 1 & 1 \\ 1 & \sqrt{2} & 1 \\ 1 & 1 & \sqrt{2} \end{pmatrix}$$

 $\Rightarrow \sin^2 \theta_{12} = 1/3$, $\sin^2 \theta_{23} = 1/3$, $\sin^2 \theta_{13} = 1/4$ and $|J_{CP}| \approx 0.083$

• study of patterns with $G_{\nu} \neq Z_2 \times Z_2$ does not reveal patterns which accommodate data well

