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Parametrization of lepton mixing

Parametrization (ppe)
UPMNS — 0 diag(l, 6ia/2, 6i<ﬁ/2+5))

with
C12C13 512C13 s1ze” %
[7 — | —S12€23 — C12823813€i5 C12€23 — 812823813€i5 5$23C13
$§12523 — 012023813€i5 —C12523 — 812023813€i5 C23C13

and Sij = sin (97;3', Cij — COS (97;]'
Jarlskog invariant Jop

k k
Jep = Im [UPMNS,HUPMNS,13UPMNS,31UPMNS,33}

1
= 3 sin 26015 sin 26053 sin 26013 cos 013 sin 0



Experimental results on lepton mixing

Latest global fits NH [IH] (capozzi et al. (13))
best fit and 1 o error 3 o range

sin” 015 = 0.0234[9] Ty 00ta), 0.0177[8] < sin® 615 < 0.0297[300]

sin? 015 = 0.308T0 517 0.259 < sin” ;5 < 0.359

0.425[37] 00290
1371 002709 0.357[63] < sin? fa3 < 0.641[59]

Sin2 923 =
[0.531 < sin® fy3 < 0.610]

+0.33(24|
5= 1395 7 oo T 0<d<2m

o, B unconstrained



Experimental results on lepton mixing

Latest global fits NH [IH] (capozzi et al. (13))

0.82 055 0.15
|Upnmns|| =~ | 0.40[39] 0.65 0.64[5]
0.40[2] 0.52 0.75[4]

and no information on Majorana phases

4

Mismatch in lepton flavor space is large!



Origin of lepton mixing

Interpret this mismatch in lepton flavor space as
mismatch of residual symmetries G, and G,

If we want to predict lepton mixing, we have to derive this
mismatch

let us assume that there is a symmetry, broken to G, and G.

this symmetry is in the following a
finite, discrete, non-abelian symmetry G's

[Masses do not play a role in this approach.]



Non-trivial breaking ofG ¢

ldea:

Derivation of the lepton mixing from how G ¢ is broken
Interpretation as mismatch of embedding of different sub-
groups G, and G, into G

Gy
v N

neutrinos charged leptons
Gy Ge



Non-trivial breaking ofG ¢

ldea:

Derivation of the lepton mixing from how G ¢ is broken
Interpretation as mismatch of embedding of different sub-
groups G, and G, into G

Gy
v N\
neutrinos
G, = Zy x Z5 (Majorana)
G, = Zy with M > 3 (Dirac)

charged leptons
Ge=Z2Zn with N >3



Non-trivial breaking ofG ¢

Gy
e N\
neutrinos
G, = Zy x Z5 (Majorana)
G, = Zy with M > 3 (Dirac)

charged leptons
Ge=Zn With N >3

Further requirements

two/three non-trivial angles = irred. 3-dim. rep. of G

fix angles through GG,,, G. = 3 families transform diff. under G, G,



Non-trivial breaking ofG ¢

neutrino sector: Zy, x Zy or Zys, M > 3, preserved and generated by

Qf Z,Q, =299 | {=1,2
or QlzQ, = z%a

charged lepton sector: Zn, N > 3, preserved and generated by

O Q. Qe = Q2



Non-trivial breaking ofG ¢

neutrino sector: Zy x Zy or Zys, M > 3, preserved

Zrm, Zi=m,, i=1,2

or Ztmim, Z =mlm,
charged lepton sector: Zn, N > 3, preserved

Ql mlme Qe — mlme



Non-trivial breaking ofG ¢

neutrino sector: Zy x Zy or Zys, M > 3, preserved

— neutrino mass matrix m,, fulfills
Ql'm, Q, is diagonal

or  Qmim,Q, is diagonal

charged lepton sector: Zy, N > 3, preserved

— charged lepton mass matrix m. fulfills

Qf mim. Q. is diagonal



Non-trivial breaking ofG ¢

Upnmns = QL
3 unphysical phases are removed by 2, — Q_.K,

neutrino masses are made real and positive through 2, — Q, K,

permutations of columns of €., €2, are possible: Q. , — Q. , P, ,

4

Predictions:
Mixing angles up to exchange of rows/columns
Jop up to sign
Majorana phases undetermined




Discrete subgroups SU (3)

discrete subgroups of SU(3) can be divided in five categories

(Miller et al. ('16), Fairbairn et al. ("64), Grimus/Ludl| ("11))
two of them not interesting, since they have no irred. 3-dim. reps.

groups of type (C) are of the form (Z,,, x Z,,) x Z3
these groups can be viewed as "generalizations" of A(3n?)

groups of type (D) are of the form (Z,, x Z,,) x S3
these groups can be viewed as "generalizations" of A(6n?)

"exceptional" groups
¥(60)(x Z3), 3(168)(x Z3) and X (np) with o = 3



GroupsX(ny)

groups with ¢ = 1: 3(36), X(72), ¥(216) and X(360);

these are subgroups of SU(3)/C (C: center)

groups with o = 3: 3(36 x 3), 3(72 x 3), 3(216 x 3) and (360 x 3);
these are subgroups of SU(3)

the groups >(60) ~ A5 and X(168) ~ PSL(2, Z7);

they are subgroups of SU(3)/C and SU(3)



GroupsX(ny)

groups with ¢ = 1: 3(36), X(72), ¥(216) and X(360);
these are subgroups of SU(3)/C (C: center)

groups with ¢ = 3: 3(36 x 3), 3(72 x 3), %(216 x 3) and 3(360 x 3);
these are subgroups of SU(3)

the groups >(60) ~ A5 and X(168) >~ PSL(2, Z7);
they are subgroups of SU(3)/C and SU(3)

Groups (72 x 3), X(216 x 3), 3(360 x 3) and X(168) might be
Interesting, because a version of minimal flavor violation in quark
sector could be realized

(Zwicky, Fischbacher ('09))



3 (36 X 3)

group with 108 elements
it has four pairs of 3(®®) and (3(®P))*, p=0,1,2,3

generators a, v and z (Grimus/Ludl ('10))

=1, v*=1, 2°=1, avlz2v=1, avz vt =1, (az)’ =1
generators in 3(% (w = e27/3)
O 1 O 1 1 1 1 0 0
1
a = O 0 1 , U= —3 1 w  w? y 2= 0 w 0
1
1 0 0 1 w? w 0 0 w?



3 (36 X 3)

group with 108 elements
it has four pairs of 3(®®) and (3(®P))*, p=0,1,2,3

generators a, v and z (Grimus/Ludl ('10))

l2ov=1, avz vt =1, (az)’ =1

a>=1, vv=1, 22=1, av™
generators in 3(P)
a, v, z with p=20,1,2,3

elements in 3(P) can be written as

g =w’2°a%vX with o, (,a=0,1,2,x=0,1,2,3



3 (36 X 3)

abelian subgroups
Lo, L3, Ly, Lg, Z12 and Z3 x Z3
especially no Klein subgroup Z; x Z5

= neutrinos have to be Dirac particles

30 elements g are represented by matrices with degenerate
eigenvalues
analysis of all combinations G, and G, shows

combination G, = Z3 and G, = Z3 not interesting

one patternfor G, = Zsand G, = Z, or G, = Z19

one patternfor G, = Z,orG, = Zioand G, = Z, or G, = Z1»



>(36 X 3)
¢ patternfor G, = Zzand G, = Z, or G, = Z1»

1 1++/3 V2
3)

1
1

i
2l @
15
2l @

|{Upnmnsl|| =
\/2(3+\f

/ S S LSS S S S S S



(36 X 3)
patternfor G, = Zsand G, = Z, or G, = Z15

0.888 0.460 0
WUpmns|l =~ | 0325 0.628 0.707
0.325 0.628 0.707

= sin? 015 =~ 0.211 and 6,3 maximal and 6,5 = 0

comments
fit to data not so good, x? ~ 151.5
has been mentioned in analysis of A(27) and CP (ishi (13))



3(36 x 3)

¢ patternforG, =Z,0rG, = Zioand G, = Z, or G, = Z1o

1 V343 V3 V2— 3
||UPMNS||:W§ V2 V3 -3 3+ /3

] J S S S S S S S S S



3 (36 X 3)

patternforG., = Z,or G, = Zio and G, = Z, or G, = Zq5

0.769 0.612 0.183
|Upnmnsll = | 0.500 0.398 0.769
0.398 0.683 0.612

= sin® 615 ~ 0.388, sin? f53 ~ 0.612 and sin? #135 ~ 0.033
comments
better fit to data, y* ~ 69.1

Jop = 0 although 6,3 # 0
second solution with sin? 653 =~ 0.388



(72 x 3)

group with 216 elements

it has four pairs of 3(P1-P2) gand (3(P1:P2))* b, py =0, 1
generators a, v, z and x (Grimus/Ludl ('10))

abelian subgroups

Lo, 23, Ly, Ze, 212 and Zz x Zs

30 elements g reveal degenerate eigenvalues

analysis of all combinations . and G, shows
only one pattern related to this group
this pattern arises from G, G, being Z, or Zi5



(72 x 3)
¢ patternforG, =Z,0rG, = Zioand G, = Z, or G, = Z1o

VERRVERRVIEVE R
||UPMNS||=L V2 V3+v3 V3-13
e 3—V3 1 1+/3

] J /S S S S S S S S S



(72 x 3)
patternforG., = Z,or G, = Zio and G, = Z, or G, = Zq5

0.769 0.532 0.354
|Upymnsll = | 0.500 0.769 0.398
0.398 0.354 0.846

= sin® 615 ~ 0.324, sin® 53 ~ 0.181 and sin? #;5 = 0.125

comments
bad fit to data, x? > 1000

but interesting: Jop # 0, |Jop| = v/3/32




31(216 x 3)

group with 648 elements

it has three pairs of 3(P) and (3(®))*, p = 0, 1,2 which are faithful
generators a, v, z and w (Grimus/Ludl ('10))

abelian subgroups

Zo, L3, Ly, ZLe, L9, Z12, Z1g and Z3 x L3, Z3 X Lg

102 elements g reveal degenerate eigenvalues



31(216 x 3)

analysis of all combinations . and G, shows
only one pattern which fits quite well, y? ~ 28.3
patterns with larger x? have Jop # 0
several patterns with 6,5 23 OK, but 6,3 too large
pattern with x? ~ 10.6 leads to group with 162 elements



31(216 x 3)

° pattern with smallest y*: G. = Z;sand G, = Z, or G, = Z1»

VE2+VE) (28+vE) 143

[ Upmnsl| = V6 \/2(3+\/§) 3++3
2/2(3 4 V3) 2 2v3+vV3  2V/2+3

] J S S S S S S S S S



31(216 x 3)

pattern with smallest y?: G. = Z1sand G, = Z, or G, = Z1

0.858 0.500 0.119
| Upmns|| = | 0.398 0.500 0.769
0.325 0.707 0.628

= sin? #15 ~ 0.254, sin® 6,3 = 0.600 and sin® ;3 ~ 0.014
comments
good fit, x* = 28.3, only 615 13 a bit too small

no CP violation, Jop = 0
second solution with sin® 55 = 0.400



31(216 x 3)

pattern with Jop # 0 and good fit for 612 23: G. = Z4 or G, = Z
and G, = Z3

0.804 0.525 0.279
[Upmns||~ | 0.483 0.445 0.754
0.346 0.726 0.595

= sin” 015 ~ 0.299, sin” fy3 ~ 0.616 and sin” A5 ~ 0.078
comments

bad fit of 0,3, total x*: v* ~ 554.6

|Jop| = 0.0417

second solution with sin? 653 ~ 0.384



31(216 x 3)

¢ pattern with Jop # 0 and good fit for 612 23: G. = Z1s and G, = Z;3

(\/_ V3 \/_)
||UPMNS||—— V3 V3 V6

2V/3

V2 V6 2

/[ /S S S S S S S S S



31(216 x 3)

pattern with Jop # 0 and good fit for 015 23: G. = Z1s and G, = Z3

0.764 0.500 0.408
|Upmns|| = | 0.500 0.500 0.707
0.408 0.707 0.577

= sin? 015 = 0.300, sin® A>3 = 0.600 and sin® #;5 ~ 0.167

comments
bad fit of 6,3, total x? > 3000
| Jop| ~ 0.0722
second solution with sin® 55 = 0.400



31(216 x 3)
pattern with x? ~ 10.6, but group C X(216 x 3): G, = Z3 & G, = Z13

) 2c18 \/5 2518
NWUpnm sl = NG c1s8 —V3s18 V2 V3cig + sis = ||Urp R13(—m/18)||
c1s +V3s18 V2 V/3cis — s1s

and c;5 = cos /18 =~ 0.985, s15 = sin7/18 ~ 0.174



31(216 x 3)
pattern with x? ~ 10.6, but group C X(216 x 3): G, = Z3 & G, = Z13

0.804 0.577 0.142
|Upunsll~ | 0279 0577 0.767
0.525 0.577 0.625

= sin® 015 =~ 0.340, sin® Ay5 ~ 0.601 and sin? 6135 ~ 0.020
comments
good fit, only 6,5 a bit too large ... but no CP violation
second solution with sin? 653 =~ 0.399
has tri-maximal mixing



31(216 x 3)
pattern with x? ~ 10.6, but group C X(216 x 3): G, = Z3 & G, = Z13

0.804 0.577 0.142
|Upunsll~ | 0279 0577 0.767
0.525 0.577 0.625

= sin® 615 ~ 0.340, sin? 53 ~ 0.601 and sin? f135 ~ 0.020
comments

found in literature for other group (Holthausen et al. (12));
very recently, also for group with 162 elements (Holthausen/Lim (13))

structure of patterns also found for groups A(6n?) (de Adelhart Toorop

et al. ("11), King et al. ("13))



3 (360 X 3)

group with 1080 elements

it has two pairs of 3(P) and (3(P))*, p = 1,2 which are faithful
generators a, f, h and q (Miller et al. ('16), Fairbairn et al. ('64))
abelian subgroups

Zo, L3, Ly, L5, ZLe, L1292, Z15 and Zy X Ly, 3 X L3, Lo X Lg

138 elements g reveal degenerate eigenvalues



3 (360 X 3)

analysis of all combinations . and G, shows
only one pattern with x? < 60
patterns with larger x? have Jop # 0

all patterns for G, or (G, being a Klein group have non-zero
Jop, but x? > 100 always



(360 x 3)

pattern with smallest y?: G. = Z,0or G, = Z15 & G, = Zys or G, = Z1

. L+v5 V5—V3—vVE+V15 V5+v3-V5— /15
WWennsll=7 | V5—vB-vE+VI5  VB+VB—Vi5 355

VE+VE-VE - VI5 V3+ 5 VE VALV



3 (360 X 3)

pattern with smallest y?: G. = Z,0or G, = Z15 & G, = Zys or G, = Z1

0.809 0.554 0.197
HUpnmns|~ | 0.554 0.605 0.572
0.197 0.572 0.796

= sin” 615 =~ 0.319, sin® fa3 ~ 0.341 and sin® #13 ~ 0.039
comments
6,5 not accommodated well, total y?: y? ~ 58.0

no CP violation; pattern with Jop # 0 has x? > 100
second solution with sin® 6,3 ~ 0.659



3 (360 X 3)

pattern with smallest y2? for G, = Zo x Zo & G, = Z, or G, = Z15

1
WUpnmNsl|| = 1

( 1++/5 \/5+\/1_—\/2(4+\/E) \/5+f—x/5(1+\/§) )

2 \/2(3+\/§)

\/2(3— V/3)

\ —1+VE 5 VBB - VB)

\/5+\/E+\/2(4+\/E) )



3 (360 X 3)
pattern with smallest y2? for G, = Zo x Zo & G, = Z, or G, = Z15

0.809 0.554 0.197
|{Upnmnsl| = | 0.500 0.769 0.398
0.309 0.319 0.896

= sin” 015 ~ 0.319, sin” fy3 ~ 0.165 and sin” A5 ~ 0.039
comments

fit for 613 23 Not good, x* ~ 148.1

but | Jop| ~ 0.0313

note G. = Z5 x Z5 = Dirac neutrinos

for Majorana neutrinos, i.e. G, = Zs x Zs, x* > 500



Some comments 0A (6n.?)

series of subgroups of SU(3) with faithful irred. 3-dim. reps.

iIsomorphic to (Z,, x Z,) x S3; described with four generators

generic form of mixing patterns for Majorana neutrinos
Upvns = UrpRi3(0)

and 6 depends on n (king et al. (13)), i.€. mMixing angles are of the form

1 1 3 sin 260 2
sin? 6010 = , sin? Oo3 = — | 1— \/_ S and sin? 013 = — sinZ 0
2 + cos 260 2 2 + cos 260 3

6=0,



Some comments 0A (6n.?)

series of subgroups of SU(3) with faithful irred. 3-dim. reps.
iIsomorphic to (Z,, x Z,) x S3; described with four generators

generic form of mixing patterns for Majorana neutrinos

Upnvns = UrpRi3(0)

and 6 depends on n (ing et al. ('13))

we Conjectured (de Adelhart Toorop et al. ('11))
0 = for G€:Z3,GV:ZQXZQ

0 = for Go. =25 , G, = Zy X Zs

%3|>]3|>1



Some comments 0A (6n.?)

series of subgroups of SU(3) with faithful irred. 3-dim. reps.
iIsomorphic to (Z,, x Z,) x S3; described with four generators

generic form of mixing patterns for Majorana neutrinos

Upnvns = UrpRi3(0)

and 6 depends on n (ing et al. ('13))

we conjectured (de Adelhart Toorop et al. (11))  [for Dirac neutrinos]

§=_" for Go=2Zs , Gy = Zon
2n

0= for G.=25 ., G, = Zop
on



Some comments 0A (6n.?)

this series of groups contains dihedral groups D,, and relatives

D,, for certain n can explain Cabibbo angle well

(Lam ('07), Blum et al. ('07,09))

example n = 8: A(384) (de Adelhart Toorop et al. ('11))
subgroups in up and down quark sectors: Z1g & Zy X Zs

cosw/16 sinw/16 0 0.981 0.195 O
Verm|l =] sinm/16 cosw/16 0 0.195 0.981 0
0 0 1 0 0 1

Q

[for leptons: G, = Z3, G, = Z5y X Zs: 0 = 7/24
sin? 015 ~ 0.337, sin” O35 ~ 0.424, sin® 013 ~ 0.011]



Some comments 0A (3n?)

series of subgroups of SU(3) with faithful irred. 3-dim. reps.

iIsomorphic to (Z,, x Z,,) x Z3; described with three generators;
thus mostly useful for Dirac neutrinos

subgroups of A(6n?)

generic form of mixing patterns: three entries z1, x5 and x3 cyclicly
permuted; matrix with two independent parameters

usually Jop # 0

examples are A(12) ~ A, and A(27):
in both cases one gets democratic mixing, i.e. |z;| = 1/v/3



Generalizations ofA (3n2?) and A (6m122)

generalizations of A(3n?): (Z,, x Z,) x Zs;
also mostly for Dirac neutrinos

generalizations of A(6n2): (Z,, x Z,,) x Ss;

expectation: results very similar to those for A(6n?)

examples which have already been discussed are
group (Zg x Z3) x S3 with 162 elements, see above

group (Zlg X Z6) X Sg (Holthausen et al. ('12,13))
[mixing pattern like for A(6n?) with n = 9, 18]



Conclusions

lepton mixing is related to breaking of finite, discrete,
non-abelian flavor symmetry down to different residual
symmetries GG, and G, in charged lepton and neutrino sector

here focus on groups > (ny) with ¢ = 3
only very few mixing patterns found which match data well
usually those with small x? imply no CP violation, Jop = 0

those with larger x? instead predict Jop # 0



Conclusions

comprehensive study of all patterns from SU (3) subgroups
=- goal: understand better how results for mixing patterns
and group structure are related (why Jop = 07?)

to be seen whether generalizations can(not) lead to new
patterns (especially for Dirac neutrinos)

study of U(3) subgroups

Thank you for your attention.



Back up

(LS AAAAAS AL



3(60)

group with 60 elements

it has two real faithful irred.3-dim. reps. 3(Y) and 3(2)
generators s and ¢ (Eholzer ('94,95))

abelian subgroups

Zo, Z3, s and Zo X Zo



3(60)

analysis of combinations G. and G, = Z5 x Z5 shows

(de Adelhart Toorop et al. ("11), Lam ('11))
only three different patterns, depending on choice of GG,
all have Jop =0

two lead to 013 = 0 and 053 = 7 /4
(patterns with golden ratio mixing)



>(60)
¢ patternfor G, = Zs X Z5 & G, = Zy X Zs

1 o 1 1/¢
||UPMNS||=§ /¢ ¢ 1

1 1/ ¢
with ¢ = (1 + v/5)/2

[ /S LSS S LSS S



> (60)
patternfor G, = Z5 x Z5 & G, = Z5 X Zy

0.809 0.500 0.309
|Upnnsll = | 0.309 0.809 0.500
0.500 0.309 0.809

= sin? 615 ~ 0.276, sin? fo5 ~ 0.276 and sin® 6,5 ~ 0.095
comments

fit not good, x? ~ 1000

no CP violation

second solution with sin? 053 &~ 0.724



> (60)
example of pattern for G, = Zs and G, = Z5

( V6 +V5) NECEG) \/%5) \
El\/l{,)(52\/5)g 21+\/115(52\/5) V& G+ V)

1+ /(5 - 2V5) 1- /256G -2v5)) /EG+ V) )

WUpnmNsl|| =

N N

N |—= N



> (60)
example of pattern for G, = Zs and G, = Z5

0.695 0.695 0.188
|Upmns|l~ | 0.406 0.594 0.695
0.594 0.406 0.695

= sin? 015 = 0.500, sin? 53 = 0.500 and sin? f15 ~ 0.035
comments

two maximal mixing angles
no CP violation



> (168)

group with 168 elements

It has one pair of faithful complex irred. 3-dim. reps. 3 and 3*
generators s and ¢ (Eholzer ('94,95))

relevant abelian subgroups

Z3, L4, Z7and Zo X Zo



> (168)

analysis of combinations G. and G, = Z5 x Z5 shows

(de Adelhart Toorop et al. ('11))
four different patterns, depending on choice of G,
all patterns have Jop # 0
PMNS mixing matrix has several equal elements (up to phase)



> (168)

patternfor G, = Z5 x Z5 & G, = Z5 X Zy

V2 o1 1
/Upnmnsl|| = 5 1 V2 o1
1 1 V2

— Sin2 010 = 1/3, Sin2 0oz = 1/3, Sin2 013 = 1/4 and ’JCPl ~ (0.083

study of patterns with G,, # Z> x Z5 does not reveal patterns which
accommodate data well
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