Electroweak precision fit and model-independent constraints on new physics

Satoshi Mishima Univ. of Rome "La Sapienza"

DaMeSyFla mid-term meeting GGI, Florence, Dec. 16-18, 2013

Contents

- I. Introduction
 - Recent theoretical progress
- 2. SM fit
- 3. Model-independent NP fits
 - Oblique parameters
 - Epsilon parameters
 - HVV coupling
 - Zbb couplings
 - Dim. 6 operators
- 4. Future sensitivity to NP
- 5. Summary

Update of the global fits in JHEP 08 (2013) 106 [arXiv:1306.4644[hep-ph]] with M. Ciuchini, E. Franco and L. Silvestrini.

working with M. Bona, M. Ciuchini, E. Franco, M. Pierini and L. Silvestrini

Satoshi Mishima (Univ. of Rome)

2 /45

1. Introduction

- Electroweak precision observables (EWPO) offer a very powerful handle on the mechanism of EWSB and allow us to strongly constrain any NP relevant to solve the hierarchy problem.
- The precise measurement of the Higgs mass at LHC as well as those of the W and top masses at Tevatron make improvement in EW fits.
- It is therefore phenomenologically relevant to reassess the constraining power of EW fits in the light of the recent exp. and theo. improvements.

Our codes

- We have developed our own C++ codes for EWPO with up-to-date formulae for radiative corrections in the on-shell scheme.
- We perform a Bayesian analysis with MCMC by using the Bayesian Analysis Toolkit (BAT) library.

Caldwell, Kollar & Kroninger

- Our fit results are in agreement with those from other groups:
 - cf. Erler with GAPP for PDG LEP EWWG with ZFITTER; Gfitter (Baak et al.); Eberhardt et al. with ZFITTER; and others.....

Our EW codes will be released to the public soon!

EW precision observables

 $M_W, \ \Gamma_W \ \text{and} \ 13 \ \text{Z-pole observables}$ (LEP2/Tevatron) (LEP/SLD)

Z-pole obs' are given in terms of effective couplings:

Theoretical status

Mw has been calculated with full EW two-loop and leading higher-order contributions.

Awramik, Czakon, Freitas & Weiglein (04)

Satoshi Mishima (Univ. of Rome)

• $\sin^2 \theta_{\text{eff}}^f$ (equivalent to κ_Z^f) have been calculated with full EW two-loop (bosonic is missing for f=b) and leading higher-order contributions.

Awramik, Czakon & Freitas (06); Awramik, Czakon, Freitas & Kniehl (09)

Recently, full fermionic EW two-loop corrections to ρ_Z^f have been calculated with a numerical integration method.
Freitas & Huang (12); Freitas (13)

> See also Sirlin; Marciano&Sirlin; Bardin et al; Djouadi&Verzegnassi; Djouadi; Kniehl; Halzen&Kniehl; Kniehl&Sirlin; Barbieri et al; Fleischer et al; Djouadi&Gambino; Degrassi et al; Avdeev et al; Chetyrkin et al; Freitas et al; Awramik&Czakon; Onishchenko&Veretin; Van der Bij et al; Faisst et al; Awramik et al, and many others

Huge 2-loop corrections to R_b^0 ?

$$(R_b^0)_{
m exp} = 0.21629 \pm 0.00066$$

Freitas and Huang found that the subleading two-loop EW corrections to R_b^0 are very large: Freitas & Huang (12)

$$R_b^0 = 0.21576
ightarrow 0.21493 \ (\Delta R_b^0 = -0.00083)$$

 $rac{1}{2} \gtrsim 2\sigma \ ext{deviation!}$

They have then found a mistake in their calculation, and the corrected result shows smaller subleading two-loop corrections.

$$R_b^0 = 0.21550 \; (\Delta R_b^0 = -0.00026)$$

2-loop corrections to other observables

Moreover, Freitas has calculated full fermionic EW two-loop corrections to Γ_Z , σ_h^0 .

2. SM fit

Input parameters

$$G_{\mu} = 1.1663787 imes 10^{-5} ~{
m GeV^{-2}}$$
 PDG

lpha=1/137.035999074 PDG

 $lpha_s(M_Z^2) = 0.1184 \pm 0.0006$ PDG excl. EW

 $\Delta \alpha_{had}^{(5)}(M_Z^2) = 0.02750 \pm 0.00033$ measured with inclusive processes.

Burkhardt & Pietrzyk (11) (see also Davier et al(11); Hagiwara et al(11); Jegerlehner(11))

smaller uncertainty if using exclusive processes with pQCD, etc. 0.02757 ± 0.00010

but discrepancy between inclusive and exclusive in low-energy data

 $M_Z=91.1875\pm 0.0021~{
m GeV}$ LEP

 $m_t = 173.2 \pm 0.9 \text{ GeV}$ Tevatron (cf. LHC: $173.3 \pm 1.4 \text{ GeV}$)

 $m_h = 125.6 \pm 0.3 \text{ GeV}$ ATLAS&CMS (naive average)

SM fit

Fit: our fit results

Indirect: determined w/o using the corresponding experimental information

	Data	Fit	Indirect	Pull
$\alpha_s(M_Z^2)$	0.1184 ± 0.0006	0.1185 ± 0.0006	0.1197 ± 0.0028	+0.5
$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	0.02750 ± 0.00033	0.02739 ± 0.00026	0.02721 ± 0.00042	-0.5
$M_Z ~[{ m GeV}]$	91.1875 ± 0.0021	91.1879 ± 0.0020	91.199 ± 0.012	+1.0
$m_t \; [{ m GeV}]$	173.2 ± 0.9	173.5 ± 0.8	176.2 ± 2.6	+1.1
$m_h [{ m GeV}]$	125.6 ± 0.3	125.6 ± 0.3	95.5 ± 26.9	-0.9
$M_W ~[{ m GeV}]$	80.385 ± 0.015	80.367 ± 0.007	80.363 ± 0.007	-1.3
$\Gamma_W \; [{ m GeV}]$	2.085 ± 0.042	2.0891 ± 0.0006	2.0891 ± 0.0006	+0.1
$\Gamma_Z [{ m GeV}]$	2.4952 ± 0.0023	2.4943 ± 0.0004	2.4942 ± 0.0004	-0.4
$\sigma_h^0 [{ m nb}]$	41.540 ± 0.037	41.479 ± 0.003	41.479 ± 0.003	-1.6
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}(Q_{ ext{FB}}^{ ext{had}})$	0.2324 ± 0.0012	0.23144 ± 0.00009	0.23144 ± 0.00009	-0.8
$P_{ au}^{ m pol}$	0.1465 ± 0.0033	0.1476 ± 0.0007	0.1477 ± 0.0007	+0.4
$\dot{\mathcal{A}_{\ell}}$ (SLD)	0.1513 ± 0.0021	0.1476 ± 0.0007	0.1472 ± 0.0008	-1.9
\mathcal{A}_{c}	0.670 ± 0.027	0.6682 ± 0.0003	0.6682 ± 0.0003	-0.1
\mathcal{A}_b	0.923 ± 0.020	0.93467 ± 0.00006	0.93466 ± 0.00006	+0.6
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.0163 ± 0.0002	0.0163 ± 0.0002	-0.8
$A_{ m FB}^{ar 0,ar c}$	0.0707 ± 0.0035	0.0740 ± 0.0004	0.0740 ± 0.0004	+0.9
$A_{ m FB}^{ar 0,ar b}$	0.0992 ± 0.0016	0.1035 ± 0.0005	0.1039 ± 0.0005	+2.8
$R_{\ell}^{\bar{0}}$	20.767 ± 0.025	20.735 ± 0.004	20.735 ± 0.004	-1.3
$R_c^{\check{0}}$	0.1721 ± 0.0030	0.17236 ± 0.00002	0.17236 ± 0.00002	+0.1
$R_b^{ar{0}}$	0.21629 ± 0.00066	0.21549 ± 0.00003	0.21549 ± 0.00003	-1.2

$-2.1\sigma~ ightarrow~-1.2\sigma$

Parametric and theoretical uncertainties

($\Delta \alpha_{had}^{(5)}(M_Z^2)$ and mt are the most important sources of parametric uncertainty.

	Prediction	$lpha_s$	$\Delta lpha_{ m had}^{(5)}$	M_Z	m_t
$M_W \; [{ m GeV}]$	80.362 ± 0.008	± 0.000	± 0.006	± 0.003	± 0.005
$\Gamma_Z [{ m GeV}]$	2.4941 ± 0.0005	± 0.0003	± 0.0003	± 0.0002	± 0.0001
\mathcal{A}_ℓ	0.1472 ± 0.0009	± 0.0000	± 0.0009	± 0.0001	± 0.0002
$A_{ m FB}^{0,b}$	0.1032 ± 0.0007	± 0.0000	± 0.0006	± 0.0001	± 0.0002
$R_b^{ar{0}^-}$	0.21550 ± 0.00003	± 0.00001	± 0.00000	± 0.00000	± 0.00003

The theoretical uncertainties from missing higher-order corrections have been estimated as

$$\delta M_W^{
m theo} \sim 0.004~{
m GeV}$$
 Awramik et al. (04)
 $\delta \Gamma_Z^{
m theo} \sim 0.0005~{
m GeV}$ Freitas (13)
 $\delta {\cal A}_\ell^{
m theo} \sim 0.00037$ ($\delta \sin^2 heta_{
m eff}^{
m lept} = 4.7 imes 10^{-5}$)

Awramik et al. (06)

Direct and indirect measurements

Individual constraints on the Higgs mass

3. Model-independent NP fits

Oblique parameters

Suppose that dominant NP effects appear in the vacuum polarizations of the gauge bosons:

$$S = -16\pi \Pi'_{30}(0) = 16\pi \left[\Pi_{33}^{NP'}(0) - \Pi_{3Q}^{NP'}(0)\right]$$

$$T = \frac{4\pi}{s_W^2 c_W^2 M_Z^2} \left[\Pi_{11}^{NP}(0) - \Pi_{33}^{NP}(0)\right]$$

$$U = 16\pi \left[\Pi_{11}^{NP'}(0) - \Pi_{33}^{NP'}(0)\right]$$
Kennedy & Lynn (89);
Peskin & Takeuchi (90.92)

- When the EW symmetry is realized linearly, U is associated with a dim. 8 operator and thus small.
- EWPO depend on the three combinations:

$$\delta M_W, \, \delta \Gamma_W \propto -S + 2c_W^2 T + rac{(c_W^2 - s_W^2) U}{2s_W^2}$$

 $\delta \Gamma_Z \propto -10(3 - 8s_W^2) S + (63 - 126s_W^2 - 40s_W^4) T$
others $\propto S - 4c_W^2 s_W^2 T$

Oblique parameters

See also, e.g., Erler (12); Gfitter (12,13)

Epsilon parameters

$$\begin{aligned} \epsilon_{1} &= \Delta \rho' \\ \epsilon_{2} &= c_{0}^{2} \Delta \rho' + \frac{s_{0}^{2}}{c_{0}^{2} - s_{0}^{2}} \Delta r_{W} - 2s_{0}^{2} \Delta \kappa' \\ \epsilon_{3} &= c_{0}^{2} \Delta \rho' + (c_{0}^{2} - s_{0}^{2}) \Delta \kappa' \\ \text{and } \epsilon_{b} \end{aligned}$$

$$\begin{aligned} s_{W}^{2} c_{W}^{2} &= \frac{\pi \alpha (M_{Z}^{2})}{\sqrt{2} G_{\mu} M_{Z}^{2} (1 - \Delta r_{W})} \\ \sqrt{\operatorname{Re} \rho_{Z}^{e}} &= 1 + \frac{\Delta \rho'}{2} \end{aligned}$$

$$\begin{aligned} \sin^{2} \theta_{\text{eff}}^{e} &= (1 + \Delta \kappa') s_{0}^{2} \\ s_{0}^{2} c_{0}^{2} &= \frac{\pi \alpha (M_{Z}^{2})}{\sqrt{2} G_{\mu} M_{Z}^{2}} \end{aligned}$$

Unlike STU, the epsilon parameters involve SM contributions, including the vertex corrections.

Epsilon parameters

	Fit result	Correlations				
ϵ_1	0.0056 ± 0.0010	1.00				
ϵ_2	-0.0078 ± 0.0009	0.79	1.00			
ϵ_3	0.0056 ± 0.0009	0.86	0.50	1.00		
ϵ_b	-0.0058 ± 0.0013	-0.32	-0.31	-0.21	1.00	

	Fit result	Correlations		
ϵ_1	0.0060 ± 0.0006	1.00		
ϵ_3	0.0059 ± 0.0008	0.87 1.00		

Epsilon parameters

$$\delta \epsilon_i = \epsilon_i - \epsilon_i^{
m SM}$$

HVV coupling

Only a Higgs below cutoff + custodial symmetry:

$$\mathcal{L} = rac{v^2}{4} \operatorname{Tr}(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma) \left(1 + 2a \, rac{h}{v} + \cdots
ight) + \cdots + rac{\Sigma : ext{ Goldstone bosons}}{a = 1 ext{ in the SM}}$$

The HVV coupling contributes to S and T at one-loop.

$$S = rac{1}{12\pi}(1-a^2)\ln\left(rac{\Lambda^2}{m_h^2}
ight)$$

 $T = -rac{3}{16\pi c_W^2}(1-a^2)\ln\left(rac{\Lambda^2}{m_h^2}
ight)$

$$\Lambda = 4\pi v/\sqrt{|1-a^2|}$$

Barberi, Bellazzini, Rychkov & Varagnolo (07)

21/45

HVV coupling

22/45

Implication on composite Higgs models

 \bullet a>1 \Rightarrow WLWL scattering is dominated by isospin 2 channel Falkowski, Rychkov & Urbano (12)

- Composite Higgs models typically generate a < 1. $\xi = \left(\frac{v}{f}\right)^2 = 1 a^2 \quad \text{in minimal composite Higgs models}$
- **Solution** Extra contributions to S and T are required to fix the EW fit under a < 1.

vector/axial-vector resonances

Zbb couplings

Four solutions from Z-pole data, while two of them are disfavored by off Z-pole data for AFBb.

Choudhury et al. (02)

The solution, closer to the SM:

$g^b_{V,A} =$	$(g^b_{V\!,A})_{ m SM}$	$+ \delta g^b_{V\!,A}$
•	•	•

Parameter	Fit result	Correlations	
δg^b_R	0.018 ± 0.007	1.00	
$\delta g_L^{\overline{b}}$	0.0025 ± 0.0014	0.90	1.00
δg_V^b	0.021 ± 0.008	1.00	
$\delta g^{\dot{b}}_{A}$	-0.016 ± 0.006	-0.99	1.00

See also Batell et al. (13)

Deviation from the SM due to $A_{\rm FB}^{0,b}$

Dim. 6 operators

We consider NP-induced dimension six operators:

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{C_{i}}{\Lambda^{2}} \mathcal{O}_{i} \qquad \text{Barbieri \& Strumia (99)}$$

$$\mathcal{O}_{WB} = (H^{\dagger} \tau^{a} H) W^{a}_{\mu\nu} B^{\mu\nu}$$

$$\mathcal{O}_{H} = |H^{\dagger} D_{\mu} H|^{2} \qquad \rightarrow \quad S \text{ parameter}$$

$$\mathcal{O}_{LL} = \frac{1}{2} (\overline{L} \gamma_{\mu} \tau^{a} L)^{2}$$

$$\mathcal{O}'_{HL} = i (H^{\dagger} D_{\mu} \tau^{a} H) (\overline{L} \gamma^{\mu} \tau^{a} L)$$

$$\mathcal{O}'_{HQ} = i (H^{\dagger} D_{\mu} \pi^{a} H) (\overline{Q} \gamma^{\mu} \tau^{a} Q)$$

$$\mathcal{O}_{HL} = i (H^{\dagger} D_{\mu} H) (\overline{L} \gamma^{\mu} L)$$

$$\mathcal{O}_{HQ} = i (H^{\dagger} D_{\mu} H) (\overline{Q} \gamma^{\mu} Q)$$

$$\mathcal{O}_{HE} = i (H^{\dagger} D_{\mu} H) (\overline{Q} \gamma^{\mu} Q)$$

$$\mathcal{O}_{HD} = i (H^{\dagger} D_{\mu} H) (\overline{D} \gamma^{\mu} D)$$

$$\mathcal{O}_{HD} = i (H^{\dagger} D_{\mu} H) (\overline{D} \gamma^{\mu} D)$$

ssume lepton-flavour universality.

switch on one operator at a time.

Dim. 6 operators

with quark-flavour universality

without quark-flavour universality

	$ C_i/\Lambda^2 ~[{ m TeV^{-2}}]$	Λ [T	eV]		$C_i/\Lambda^2 \ [\text{TeV}^{-2}]$	Λ [T	eV]
Coefficient	at 95%	$C_i = -1$	$C_i = 1$	Coefficient	at 95%	$C_i = -1$	$C_i = 1$
C_{WB}	[-0.0098, 0.0040]	10.1	15.7	C'_{HO_1}	[-0.025,0.035]	6.3	5.3
C_H	[-0.031,0.005]	5.7	14.2	C'_{HO_2}	[-0.025, 0.035]	6.4	5.3
C_{LL}	[-0.008, 0.022]	10.9	6.8	C'_{HO}, C'_{HO_2}	[-0.017, 0.061]	7.7	4.0
C'_{HL}	[-0.013,0.004]	8.9	15.3	C_{HO}	$\begin{bmatrix} -0.25, 0.35 \end{bmatrix}$	2.0	1.7
C'_{HQ}	[-0.008, 0.016]	10.9	7.8	C_{HQ_1}	[-0.16, 0.18]	2.5	2.4
C_{HL}	[-0.006, 0.011]	13.2	9.6	C_{HU_2}	[-0.12, 0.18]	2.8	2.4
C_{HQ}	[-0.016,0.052]	7.9	4.4	C_{HU_1}	[-0.10, 0.17]	3.1	2.4
C_{HE}	[-0.016, 0.007]	8.0	12.2	C_{HD} , C_{HD}	[-0.35, 0.25]	1.7	2.0
C_{HU}	[-0.058, 0.090]	4.2	3.3	C_{HD_1}, C_{HD_2}	[-0.41, -0.01]	1.6	
C_{HD}	[-0.17, 0.04]	2.5	5.3	С⊓D3		1.0	

Recent exp. improvements strengthen the bounds on NP!

4. Future sensitivity to NP

- JEP = Triple LEP (80km) or Tetra LEP (100km).
- **()** A high-luminosity circular e^+e^- collider.
- **Produces** $10^{12} Z$, $10^8 W^+ W^-$, $10^6 Zh$ and $10^6 t\bar{t}$.
- The same tunnel will be used for VHE-LHC (a 100 TeV hadron collider) later.
- Physics run from 2030?

TLEP precision

ILCTDR vol. 2

TLEP Design Study Working Group, arXiv:1308.6176

	Current data	LHC	low e^+e^-	ILC	TLEP-Z	TLEP-Z (pol.)	TLEP-W	TLEP-t
$\alpha_s(M_Z^2)$	0.1184 ± 0.0006							
$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	0.02750 ± 0.00033		± 0.00005					
$M_Z ~[{ m GeV}]$	91.1875 ± 0.0021			± 0.0016	± 0.0001			
$m_t \; [{ m GeV}]$	173.2 ± 0.9	± 0.6		± 0.1				± 0.016
$m_h \; [{ m GeV}]$	125.6 ± 0.3	± 0.15		± 0.032				
$M_W ~[{ m GeV}]$	80.385 ± 0.015	± 0.008		± 0.006			± 0.00064	
$\Gamma_W ~[{ m GeV}]$	2.085 ± 0.042						± 0.030	
$\Gamma_Z [{ m GeV}]$	2.4952 ± 0.0023			± 0.0008	± 0.0001			
$\sigma_h^0 [{ m nb}]$	41.540 ± 0.037				± 0.025			
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}(Q_{ ext{FB}}^{ ext{had}})$	0.2324 ± 0.0012				± 0.0001			
$P^{ m pol}_{ au}$	0.1465 ± 0.0033				± 0.0002			
\mathcal{A}_{ℓ}	0.1513 ± 0.0021			± 0.0001		± 0.000021		
\mathcal{A}_{c}	0.670 ± 0.027					± 0.010		
\mathcal{A}_b	0.923 ± 0.020			± 0.001		± 0.007		
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010				± 0.0001			
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035				± 0.0003			
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016				± 0.0001			
$R^{ar{0}}_{\ell}$	20.767 ± 0.025				± 0.001	red		timates
$R_c^{ m 0}$	0.1721 ± 0.0030				± 0.0003		our cs	
R_b^0	0.21629 ± 0.00066			± 0.00014	± 0.00006			

JUNE TLEP-Z: one-year scan of the Z resonance

- **____** TLEP-W: one-year (or two years) scan of the WW threshold
- JUNE TEP-t: five-year scan of the ttbar threshold

TLEP-t precision on m_t

The top-quark mass is measured through top-pair productions near threshold.

Estimate by the TLEP design study working group: stat. error: 10 (12) MeV for 4 (2) IPs syst. error: < 10 MeV</p>

The latter requires the better knowledge of the beamenergy spectrum, the precise measurement of α_s at TLEP-W, etc., and reduction of theoretical uncertainties.

 $egin{aligned} ext{Current uncertainty in the conversion of $E_{ ext{res}}$ into m_t:}\ &\deltalpha_s=0.0006~
ightarrow \delta m_t\sim 23~ ext{MeV}\ & ext{scale variation}~
ightarrow \delta m_t\gtrsim 20~ ext{MeV}$ Penin & Steinhauser (02)

Parametric and theoretical uncertainties

Solution We assume that theoretical uncertainties will be reduced by calculating subleading three-loop contributions of $O(\alpha^2 \alpha_s)$ and $O(\alpha^3)$.

	TLEP		Parametric uncertainty Theoretic						
	direct	α_s	$\Delta lpha_{ m had}^{(5)}$	M_Z	m_t	m_h	Total	current	future
$\delta M_W ~[{ m MeV}]$	± 0.64	± 0.36	± 0.91	± 0.13	± 0.10	± 0.14	± 1.00	± 4	± 1
$\delta\Gamma_Z[{ m MeV}]$	± 0.1	± 0.3	± 0.0	± 0.0	± 0.0	± 0.0	± 0.3	± 0.5	± 0.1
$\delta {\cal A}_\ell \; [10^{-5}]$	± 2.1	± 1.6	± 13.7	± 0.6	± 0.4	± 0.9	± 13.9	± 37.0	± 11.8
									•

 $\delta \sin^2 heta_{
m eff}^{
m lept} = 1.5 imes 10^{-5}$

- Parametric uncertainties are dominated by $\Delta \alpha_{had}^{(5)}(M_Z^2)$.
- Theoretical calculations at three-loop level and beyond are necessary to reach the TLEP precision.

Our strategy

For the TLEP study, we do not assume the ILC results.

We neglect possible correlations among the data.

We consider two scenarios:

SM scenario:

apply the current SM-fit results to the central values of "future data", used in studying TLEP sensitivity to NP.

NP scenario:

apply current NP-fit results to the central values of "future data" and demonstrate the power of TLEP in NP searches.

TLEP sensitivity to S and T (U = 0)

ILC and TLEP improve the sensitivity to NP.

TLEP sensitivity to S and T (U = 0)

Individual constraints on S and T (U = 0)

At present

Impact of theoretical uncertainties (U = 0)

SM scenario

SM scenario

Theoretical effort to reduce uncertainties is required to achieve a precision of $\lesssim 10^{-2}$.

Future sensitivity to S, T and U ($U \neq 0$)

NP scenario

0.3 0.3 F at present at present LHC + low-energy e^+e^- LHC + low-energy e^+e^- ILC ILC 0.2 0.2 TLEP-Z TLEP-Z TLEP-t TLEP-t 0.1 0.1 0 0 -0.1 68% with U≠0 68% with U≠0 -0.2 -0.1 0.2 -0.1 0.1 0.2 -0.1 0 0.1 0 0.3 S S

 $ightarrow \delta S \sim 7 imes 10^{-3}, \ \delta T \sim 7 imes 10^{-3}, \ \delta U \sim 6 imes 10^{-3}$

Satoshi Mishima (Univ. of Rome)

NP scenario

Future sensitivity to Epsilons

Future sensitivity to the HVV coupling

SM scenario

NP scenario

The HVV coupling can be measured with a precision of $\lesssim 2 \times 10^{-3}$.

Future sensitivity to Zbb couplings

Caveat: Future theory uncertainty $\delta R_b^0 \sim 1 \times 10^{-4}$ has not been taken into account in the above plots.

40/45

Future sensitivity to dim. 6 operators

SM scenario

NP scenario

Improvements by a factor of 5 to 10!

Future sensitivity to NP scale

The fit result for C_i/Λ^2 can be interpreted as a lower bound on the NP scale by fixing the coupling.

SM scenario, in units of TeV

	at pre	esent	LHC + lo	LHC + low e^+e^-		TLEP-Z		P-t
Coefficient	$C_i = -1$	$C_i = 1$	$C_i = -1$	$C_i = 1$	$C_i = -1$	$C_i = 1$	$C_i = -1$	$C_i = 1$
C_{WB}	12.0	12.0	15.5	15.5	28.9	28.8	38.5	39.0
C_{H}	7.4	7.4	9.9	9.9	17.1	17.2	27.8	27.9
C_{LL}	8.1	8.1	9.4	9.4	24.3	24.3	27.6	27.6
C'_{HL}	10.9	10.9	12.7	12.7	25.1	25.1	31.2	31.3
C'_{HQ}	9.1	9.1	9.1	9.1	19.7	19.6	20.0	20.0
C_{HL}	10.4	10.4	10.5	10.5	24.8	24.7	28.2	28.3
C_{HQ}	5.5	5.5	5.5	5.5	15.2	15.2	15.3	15.3
C_{HE}	8.9	8.9	9.2	9.2	29.5	29.5	31.1	31.2
C_{HU}	3.7	3.7	3.7	3.7	8.4	8.4	8.6	8.6
C_{HD}	3.2	3.2	3.2	3.2	7.5	7.5	7.7	7.7

The TLEP measurements would push up the lower bound of the NP scale significantly!

Future sensitivity to dim. 6 operators

Without quark-flavour universality

SM scenario

NP scenario

Top mass vs. (meta-)stability

The measurement of the top mass is crucial for testing the stability of the SM vacuum. Degrassi et al.(12); Buttazzo et al.(13)

 $m_t^{
m pole} < (171.36 \pm 0.46) \; {
m GeV}$

- **J** Tevatron pole(?) mass: 173.2 ± 0.9 GeV
- **9** Pole from MSbar: $173.3 \pm 2.8 \text{ GeV}$
- Indirect determination from EW fit: $176.2 \pm 2.6 \text{ GeV}$

At TLEP:

 $\delta m_t^{
m direct} \sim \pm 0.016~{
m GeV}$

 $\delta m_t^{
m indirect} \sim \pm 0.2~{
m GeV}$

5. Summary

- We have updated the EW fit with the recent exp. data and the recently computed fermionic EW 2-loop corrections to the Zff couplings.
- We have derived constraints on oblique parameters, epsilon parameters, HVV coupling, Zbb couplings and dim. 6 operators.
- The constraining power of the EW fit have been improved by the recent experimental progresses.
- Future data (ILC/TLEP) will strengthen greatly the power of the EW fit.

Backup

Comparison to ZFITTER

With a given set of the input parameters and without using the new formulae for the partial Z widths:

	ZFITTER	OURS	Difference	Exp uncertainty
M_W	80.362216	80.362499	0.00035%	0.02%
$\Gamma_{oldsymbol{W}}$	2.0906748	2.0887391	-0.093%	2.0 %
Γ_Z	2.4953142	2.4951814	-0.0053%	0.09%
σ_h^0	41.479103	41.483516	0.011%	0.09%
${ m sin}^2 heta_{ m eff}^{ m lept}(Q_{ m FB}^{ m had})$	0.23149326	0.23149297	-0.00012%	$\mathbf{0.52\%}$
$P^{ m Pol}_{ au}$	0.14724705	0.14724926	0.0015%	2.2 %
\dot{A}_{ℓ}	0.14724705	0.14724926	0.0015%	1.4%
$A_{oldsymbol{c}}$	0.66797088	0.66799358	0.0034%	4.0%
$oldsymbol{A_b}$	0.93460981	0.93464051	0.0033%	2.2 %
$A^{0,\ell}_{\rm FB}$	0.016261269	0.016261758	0.0030%	5.5%
$A_{ m FB}^{0,c}$	0.073767554	0.073771169	0.0049%	5.0%
$A_{ m FB}^{0,b}$	0.10321390	0.10321884	0.0048%	1.6%
R^0_ℓ	20.739702	20.735130	-0.022%	0.12%
R^0_c	0.17224054	0.17222362	-0.0098%	1.7%
R_b^0	0.21579927	0.21578277	-0.0077%	0.31%

Our results are in agreement with ZFITTER v6.43.

Other measurements of HVV couplings

Γ_{im}

Гн

HZZ

HWW

Hbb

Hcc

Hgg

Her