

ALARA COMMITTEE Level III

REPLACEMENT OF PSB DUMP

Alba Sarrió on behalf of EN-STI-TCD section Thanks to: Antonio Perillo-Marcone, Frédéric Loprete, Caterina Bertone, Frédéric Delsaux, Robert Froeschl and Gérald Dumont.

> EN-STI 21 May 2013

PRESENTATION OUTLINE

- Type of intervention
- History and justification
- Work description
- Summary of dose optimization measures

TYPE OF INTERVENTION LIGNE BTY VERS ISOLDE B1M-M1A50 SLW-SSSS 0123U-MT BIM-BCI 02-MLB Source of radiation TV-BVT101 STIPV-MT Δ D ~42 µSv/h (August 2013) DUMP beam core pipe **BTY** line R A SUCCESS **BTM** line

Present PSB dump mock-up Thanks to F. Loprete

HISTORY

- 1. The PSB dump was designed in the early 1970's to cope with beam energies reaching 800 MeV and intensities of 10¹³ protons per pulse in each ring*
- 2. Over the past years, the dump encountered some problems, i.e. vacuum and water leaks
- 3. Beam energy and intensity have been gradually increased during the last upgrades (1 GeV in 1988 and 1.4 GeV in 1999)

* G. Gelato et al., IEEE Particle Accelerator Conference, Washington D.C. 1987

JUSTIFICATION

- 1. Dump is nowadays under-dimensioned (i.e. energy leaking radially and longitudinally)
- A new upgrade in beam energy (2 GeV) and beam intensity (10¹⁴ particles per pulse) is foreseen for LS2: dump core would reach extreme temperatures and stresses
- 3. Consequently: a new dump is needed to cope with this last upgrade.

Energy Deposition in present PSB Dump – current beam parameters Simulation by FLUKA, thanks to STI-EET

WORK PLANNING

- 1. Preparatory measures for LS1 prior intervention
- 2. Temporary dismantling of equipment in BT, BTM and BTY lines
- 3. Dismantling and disposal operations of dump and its shielding
- 4. Installation of new dump
- 5. Re-assembly of equipment in BT, BTM and BTY lines.
- 6. Survey
- 7. Ready for commissioning

TOTAL COLLECTIVE DOSE 3.11 mSv

1. PRE-SHIELDING: PREPARATORY MEASURE FOR LS1

- 'Plug against radiation' installed on 18 April 2013
- This 'plug' is also useful for other activities during LS1, before the dump removal tasks.

Plug against radiation

Carbon steel block: \varnothing 180 mm x L 150 mm

STORAGE OF BEAM LINE ELEMENTS

3. DISMANTLING AND DISPOSAL OPERATIONS

3. DISMANTLING AND DISPOSAL OPERATIONS

3. DISMANTLING AND DISPOSAL OPERATIONS

CONTAINER FOR RW

- 5-7 cm of lead on dump side
- 2 cm of steel on pipe side
- weight: ~3000 kg with RW

The necessary equipment will be brought through the shaft by crane

Length: 2.6m to 2.9m Width: 1.3m SWL PR: 10t

3. DISMANTLING AND DISPOSAL OPERATIONS: DUMP REMOVAL

3. DISMANTLING AND DISPOSAL OPERATIONS: DUMP REMOVAL

TOTAL collective dose)

MAIN RISK OF DISMANTLING DUMP: it is adhered to the shielding and it does not come out

 A test was performed on the 25th of April and the dump was successfully pulled out – manually – by about 15 cm

 \rightarrow NO LONGER A RISK

- Inspection by means of an endoscope the same day, the dump seems to be in one piece
- The operator who performed the operation took 6 μSv

ENDOSCOPY 25TH April 2013

ENDOSCOPY 25TH April 2013

Another endoscopy planned for June 2013, to investigate further:

- State of Rail
- Junction between 4th and 5th block
- State and position of dump
- Upper part of concrete blocks: lifting point?

RISK: FAILURE OF PULLING SYSTEM

• A) Risk of CABLE breaking

- Cable certified to withstand 1200 kg.
- Winch max. force 900 kg.
- Estimated force required to pull dump ~ 100-200 kg.
- Very high safety margin
 - \rightarrow NO LONGER A RISK

• B) Risk of tool slipping: TOOL HURTING OPERATOR

- Very unlikely to happen: high friction between tool and pipe → slow motion
- Operator far away and protected by a lead screen

 \rightarrow NO LONGER A RISK

- C) Risk of PIPE breaking
 - FE simulations show stresses well below the limit

 \rightarrow NO LONGER A RISK

MAIN RISK OF DISMANTLING DUMP: the saw blade breaks while cutting

- The experience shows that this is very unlikely to happen. The cut is done very slowly, it is lubricated and cooled.
- Some modifications have been done in the saw, so that the exchange of its blade (if needed in case of accident) is as fast as possible.
- It would take max 5 min. to replace the blade: 4 min. in 'JO' and 1 min. in 'JOO'
- It would mean 1 mSv (if blade breaks while cutting dump 1st cut)
- It would mean 112 μSv (if blade breaks while cutting pipe)

3. DISMANTLING AND DISPOSAL OPERATIONS: DUMP REMOVAL

DUMP EXTRACTION CONTROLLED REMOTELY BY CAMERAS

There will be 3 cameras, focused on:

- 1) The saw's mechanism
- 2) The cut (pipe and dump)
- 3) The container for RW

3. DISMANTLING AND DISPOSAL OPERATIONS: TRANSPORT TO ISR

- Extension of rail
- Erection of a movable crane on site (custom made for this operation)

- Positioning of trailer in front of cavity
- Alignment and fixation to the rail extension
- Installation of a pallet beside the trailer to receive the block

- Hoist pre-aligned
- Hook lowered prior to extraction
- Extraction of block

 Place sling around block (previously prepared on a bar)

 The operator steps back and with the radio command (5m away) lifts the block and transfers it on the pallet

- Hook removed
- Block fixed to the pallet by 2 straps that were already in place
- The lifting slings are left in place for further transfer

The containers will be marked, since not all of them will be equally radioactive

3. DISMANTLING AND DISPOSAL OPERATIONS: SHIELDING REMOVAL + TRANSPORT TO ISR

3. DISMANTLING AND DISPOSAL OPERATIONS:

	Total Time [h]	Collective Dose [µSv]	(% of TOTAL collective dose)
Dump removal	4	450	15
Transport to ISR	2	141	5
Shielding removal + Transport to ISR	11	746	24
TOTAL	17	1337	43 %

Installation of new dump

Installation of new dump

Collective dose ~ 205 µSv (~7% of TOTAL collective dose)

5. RE-ASSEMBLY OF EQUIPMENT IN BT, BTM AND BTY LINES. CONNECT SERVICES

- Re-assembly of equipment in BTM line
- Re-assembly of equipment in BTY line
- Final reconstruction and Connect Services

WORK PLANNING

- 6. Survey
- 7. Ready for commissioning

TOTAL collective dose ~ 3.11mSv

Operation breakdown	Total Time [h]	Collective Dose [µSv]	(% of TOTAL collective dose)
Dismantling equipment	38	585	19
Extraction and disposal of dump + shielding	17	1337	43
Installation new dump	44	205	7
Re-assembly equipment	4	666	22
TOTAL	103	2793	91 %

- 1. Plug against radiation: installed at the beginning of LS1, in order to protect any worker in the area.
- Winch used to extract radioactive elements placed far (~7 m)
- 3. Mock-up in Building EHN1: to get familiar with the operations to perform, learn from the mistakes made, improve the strategy and last but not least reduce the time spent.

- 4. Custom made shielded container for dump core and beam pipe: 5-7 cm lead on beam side, 2 cm steel on pipe side
- 5. Controlled fall of dump safely inside shielded container (no need for manipulation)

6. Container closed at distance

7. Cutting of beam pipe-dump core assembly done remotely (workers exposure reduced). Use of cameras.

8. Displacement mock-up from dump area to the lorry outside on the street, done by EN-HE-HH
SUPPORT DOCUMENTS

 EDMS document 1265118 (detailed procedure) <u>https://edms.cern.ch/document/1265118/1</u>

 WDP: '2013_PSB_Dump_exchange' on Sharepoint

https://espace.cern.ch/rpps/wdp/docs/PS%20Comple x/Booster/2013-2014 LS1/2013 PSB Dump exchange.xlsx

Thanks for your attention Q & A?

BACK-UP

PRESENT PSB DUMP CORE

Vacuum Pipe

DUMP MOCK-UP

<u>A-A</u>

Outermost shielding block must be blocked

ENDOSCOPY

15/12/2011

15/12/2011

2

The

27

MEASUREMENTS

RAIL IN CAVITY

Old drawings

MAGNET BTY-QFO 108

GIRDER vs RAIL INSIDE CAVITY

Girder's top surface d = 940 mm

Rail's surface where the concrete blocks roll d = 807 mm

floor

GIRDER vs RAIL INSIDE CAVITY

3. TEMPORARY DISMANTLING OF EQUIPMENT IN BT, BTM AND BTY LINES

3. TEMPORARY DISMANTLING OF EQUIPMENT IN BT, BTM AND BTY LINES

BTM beam line equipment

3.12	Window BTM-SGHV3			
3.13	BTM-BCT			
3.14	Semfil Tank			
3.15	Vacuum Tube			
3.16	TV Station			
3.17	Vacuum Tube			
3.18	Big Split Plate			
3.19	Tank Split Plates			
3.20	Split Plate			
3.21	Vacuum Tube			
3.22	Vacuum Chamber			
3.23	Pick-Up			
3.24	Vacuum Tube			
3.25	Semfil Tank			
3.26	Vacuum Tube			
3.27	Semfil Tank			
3.28	Vacuum Chamber			
3.29	Upper Chamber support			
3.30	Lower Chamber support			
3.31	Varian Ion Pump			

RADIOACTIVE WASTE ESTIMATED

- DUMP CORE + BEAM PIPE + 'PLUG AGAINST RADIATION'
 - Weight: ~190 kg (~130 kg dump + ~25 kg pipe + ~35 kg plug)
 - Container:
 - Frame made of steel, walls made of lead.
 - weight: ~2 t
 - Size: 1300 x 1000 x 350 mm
 - 5 cm lead for dump, 2.5 cm steel for pipe
 - Total weight: ~ 2.2 t
- CONCRETE BLOCKS (X5)
 - Weight: 1850 kg each block
 - 5 containers made of steel
 - Every block has different levels of activation, being the last one the most active one.

NEW INTEGRATION MODEL

Plug against radiation – before & after

Plug against radiation – before & after

Vacuum window – very active: 1 mSv/h in contact (April 2013)

The screws can be removed – have been removed

Area for mock-up operations

PLANNING INTERVENTION

ID	6	Task Mode	Task Name	Duration	Start	Finish	Jul '13 Aug '13 Sep '13 Oct '13 Nov '13 Dec '13 Jan '14 Feb '14 Mar '
1		\$	Beam dump replacement	120 days	Mon 05/08/13	Fri 31/01/14	
2		1 ²	Dismantling equipment area	15 days	Mon 05/08/13	Fri 23/08/13	Dismantling equipment area 05/08 23/08 15 days
7		*	New dump ready confirmed by EN-STI	0 days	Mon 26/08/13	Mon 26/08/13	New dump ready confirmed by EN-STI
8		3	Existing Dump removal	10 days	Mon 26/08/13	Fri 06/09/13	Existing Dump removal 26/08 10 days
11		3	New Dump Installation	22 days	Mon 09/09/13	Tue 08/10/13	New Dump Installation 09/09 - 08/10 22 days
16		3	Re-Assembly equipment area	25 days	Wed 09/10/13	Tue 12/11/13	Re-Assembly equipment area 09/10 U 12/11 25 days
20		*	Contingency	8 days	Wed 13/11/13	Fri 22/11/13	Contingency
21		*	Final Survey BTY and BTM lines after dump replacement	8 wks	Mon 25/11/13	Fri 31/01/14	Final Survey BTY and BTM lines after dump replacement 25/11 8 wks

Task Name	Duration	Start	Finish
Beam dump replacement	120 days	Mon 05/08/13	Fri 31/01/14
Dismantling equipment area	15 days	Mon 05/08/13	Mon 26/08/13
Dismantling equipment next to beam line	3 days	Mon 05/08/13	Wed 07/08/13
Dismantling equipment BTY line	1 wk	Thu 08/08/13	Wed 14/08/13
Survey BTM line	2 days	Thu 15/08/13	Fri 16/08/13
Dismantling equipment BTM line	1 wk	Mon 19/08/13	Fri 23/08/13
New dump ready confirmed by EN-STI	0 days	Mon 26/08/13	Mon 26/08/13
Existing Dump removal	10 days	Mon 26/08/13	Fri 06/09/13
Extraction&Disposal of dump core+beam pipe	1 wk	Mon 26/08/13	Fri 30/08/13
Extraction&Disposal of shielding	1 wk	Mon 02/09/13	Fri 06/09/13
New Dump Installation	22 days	Mon 09/09/13	Tue 08/10/13
New shielding Installation	1 wk	Mon 09/09/13	Fri 13/09/13
New Dump Installation	1 wk	Mon 16/09/13	Fri 20/09/13
BTY-QFO108's new support installation	2 days	Mon 23/09/13	Tue 24/09/13
New cooling equipment installation	2 wks	Wed 25/09/13	Tue 08/10/13
Re-Assembly equipment area	25 days	Wed 09/10/13	Tue 12/11/13
Re-Assembly equipment BTM line	2 wks	Wed 09/10/13	Tue 22/10/13
Re-Assembly equipment BTY line	2 wks	Wed 23/10/13	Tue 05/11/13
Re-Assembly equipment next to beam line	1 wk	Wed 06/11/13	Tue 12/11/13
Contingency	8 days	Wed 13/11/13	Fri 22/11/13
Final Survey BTY and BTM lines after dump replacement	8 wks	Mon 25/11/13	Fri 31/01/14

STORAGE OF BEAM LINE ELEMENTS: 361/S-001

Save time placing equipment

SIMULATIONS ACTIVATION DUMP CORE

SIMULATIONS ACTIVATION BLOCK 1

SIMULATIONS ACTIVATION BLOCK 2

SIMULATIONS ACTIVATION BLOCKS 3 & 5

SIMULATIONS ACTIVATION BLOCK 4

PICTURES OF THE AREA

