A SIMPLE API FOR GRID AND DISTRIBUTED APPLICATIONS. (SAGA)

Danila Oleynik

01.06.2013 ASCR meeting.

Introduction

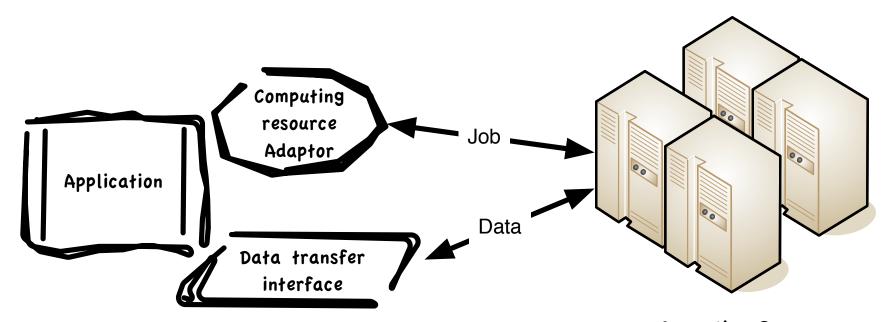
- SAGA (Simple API for Grid Applications) defines a high-level interface to the most commonly used distributed computing functionality. SAGA provides an access-layer and mechanisms for distributed infrastructure components like job schedulers, file transfer and resource provisioning services
- Behind the API facade, SAGA-Python implements a flexible adaptor architecture. Adaptors are dynamically loadable modules that interface the API with different middleware systems and services.
- http://saga-project.github.io

Supported Middleware

Job Submission Systems

(All queuing system adaptors can also access clusters remotely by tunneling commands through SSH and GSISSH)

- SSH and GSISSH
- Condor and Condor-G
- PBS and Torque
- Sun Grid Engine
- SLURM


File / Data Management

- SFTP/GSIFTP
- HTTP/HTTPS

Resource Management / Clouds

EC2 (libcloud)

How it works

Computing Resource:
Condor and Condor-G,
PBS and Torque,
Sun Grid Engine,
SLURM,
Remote host (SSH)

Other features

- Configuration and logging
- Arguments and environment
- Special parameters for batch processing systems
- Different security contexts:
 - UserPass
 - SSH
 - X.509
 - MyProxy
 - EC2
 - EC2_KEYPAIR
- And much more other features (not all features still documented ©)

Some experience

- Configuration:
 - SAGA application host: laptop
 - Job processing: remote hosts in UTA, JINR, lxplus
 - Adaptor: SSH
 - Security context: UserPass, SSH RSA

Results

- In most of cases simple test like 'Hello world' passed
 - Authorization on Ixplus with RSA got some troubles.

Next step

- Some more complicated tests: upload executable to remote host, collecting parameters of execution.
- Testing with batch systems: PBS(Torque), SGE, Condor
 - Agreed to use Tier3 simulating infrastructure in JINR for this tests.