CONSTANT FRACTION DISCRIMINATOR

F. Loddo & C. Tamma – INFN Bari
Principle of Operation

Creation of a variable threshold tracking the signal always at a certain fraction of its amplitude

\[V_{OUT}(t) = V_{IN}(t - T_d) - f \times V_{IN}(t) \]

The output bipolar signal has a zero crossing time \(T_0 \) depending only on network parameters \((T_d, f) \)

\[T_d > (1-f) \times T_p \quad TRUE \ \CONSTANT \ FRACTION \ TIMING \ TCF \]

\[T_d < (1-f) \times T_p \quad AMPLITUDE \ AND \ RISE \ TIME \ COMPENSATED \ TIMING \ ARC \]
Proposed Shaping Network

Cross coupling topology

Main Advantage:
The fully differential structure provides very good rejection of common mode noise injected in the substrate by the switching digital logic.

S. Garbolino, S. Martoiu and A. Rivetti

Implementation of Constant-Fraction-Discriminators (CFD) in Sub-micron CMOS Technologies

2011 IEEE Nuclear Science Symposium Conference Record
Shaping Network

To minimize timing jitter, the rms noise must be minimized while the signal slope through the threshold crossing must be maximized.

\[
\begin{align*}
f &= 0.5 \\
T_d &= 50\% \, T_p
\end{align*}
\]

To matches the peak of the input signal \(T_p \) and the amplitude tracking threshold is set to the 50% of the amplitude of the input signal.
Shaping Network

Cross coupling topology

Moreover, once the fraction is fixed a higher order filter has a higher slope (less jitter)

Design Specifications:
- filter order \(n = 3 \) as compromise between timing precision and area occupied
- fraction factor \(f = 0.4 \)
- Time delay \(T_d = 0.6 \times T_p \) programmable with \(T_p \) through switches
- TCF configuration with Crossing Time \(T_0 = T_p \)
- Use of polysilicon resistors and vertical natural capacitors

- New: Possibility to compensate parameter process variations using additional capacitors (enabled by switches)
Shaping Network

One or more “S_1” analog switches can be closed to reach the desired T_d.

- **+3σ case:**
 - S_{1i} closed.
 - S_{2i} and S_{3i} opened.

- **typical case:**
 - S_{1i} and S_{2i} closed.
 - S_{3i} opened.

- **-3σ case:**
 - S_{1i}, S_{2i} and S_{3i} closed.

Optimization of T_d with process variations
Example: \(T_p = 75 \text{ ns} \)

- \(V_{IN} \)
 - Amplitude = 100 mV
 - \(T_p = 75 \text{ ns} \)

- \(V_{OUT} \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crossing time (T_0)</td>
<td>75.12 ns</td>
</tr>
<tr>
<td>Delay time (T_d)</td>
<td>43.41 ns</td>
</tr>
<tr>
<td>Fraction factor (f)</td>
<td>0.422</td>
</tr>
</tbody>
</table>
Example: $T_p = 75$ ns

Amplitude Compensation

Amplitude $= 10 \div 1000$ mV

$T_p = 75$ ns

<table>
<thead>
<tr>
<th>T_0</th>
<th>$74.98 \div 75.12$ ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔT_0</td>
<td>0.14 ns</td>
</tr>
<tr>
<td>T_p [ns]</td>
<td>Crossing Time T_0 [ns]</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>25</td>
<td>24.75</td>
</tr>
<tr>
<td>50</td>
<td>49.77</td>
</tr>
<tr>
<td>75</td>
<td>75.12</td>
</tr>
<tr>
<td>100</td>
<td>100.45</td>
</tr>
<tr>
<td>200</td>
<td>199.96</td>
</tr>
</tbody>
</table>
Based on two identical comparators with hysteresis (60 µA + digital inverters)

Working on differential signals

The use of a leading edge arming comparator provides energy selection capability and prevents the sensitive zero-crossing device from triggering on the noise.
CFD simulations ($T_p = 75$ ns)

- $T_{peak} = 75$ ns
- 10 mV (close to V_{th}) $\leq V_{in} \leq 1000$ mV

- CFD output
- ZCC output
- Arming output

- Time walk < 1 ns in all configurations: ($T_p = 25$ ns, 50 ns, 75 ns, 100 ns and 200 ns)

- In case of $T_p = 400$ ns, using the CFD settings for 200 ns we get $\Delta T_0 \sim 3$ ns
CFD Status

• CFD preliminary results look promising

• The Zero-crossing section quite mature (corner simulations looks fine)

• Arming section: 2 options
 1. Single-ended shaper output (and AC coupling)
 2. Differential outputs (same as CFD shaping network)

• We are working on Threshold network for option 2

• Probably not ready for August submission