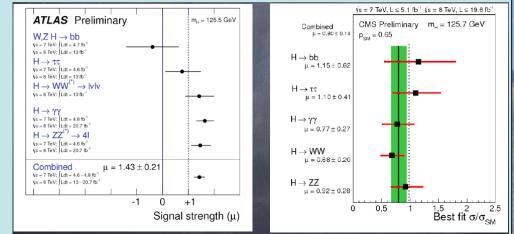
Outlook for Supersymmetry

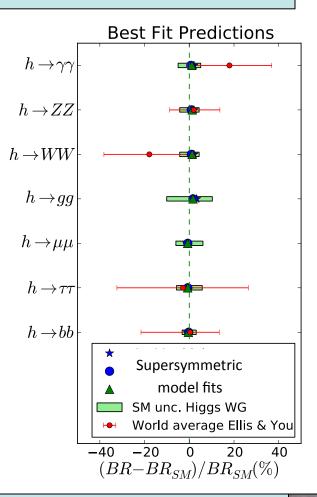
John Ellis King's College London & CERN CoEPP Tropical Conference, Cairns



The Particle Higgsaw Puzzle

Is LHC finding the missing piece? Is it the right shape? Is it the right size?

From Discovery to Measurement

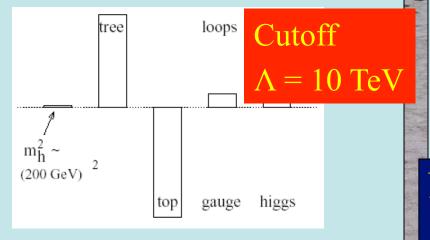

- Mass measurements: $125.6 \pm 0.3 \text{ GeV}$
- Signal strengths ~ SM in many channels
- Frontiers:


- VBF significance $>2\sigma$ in several channels, 3σ combined
- Decay to $\tau\tau$ emerging, limits on $\mu\mu$ ($\mu\tau$, $e\tau$)
- Decay to bbbar emerging (CMS, Tevatron)
- Indirect evidence for ttbar coupling (search for ttbar + H/W, $Z\gamma$)

Some Questions

• What is it? -Higgs or ...? • What else is there? -Supersymmetry ...? • What next? -A Higgs factory or ...?

Couplings resemble Higgs of Standard Model



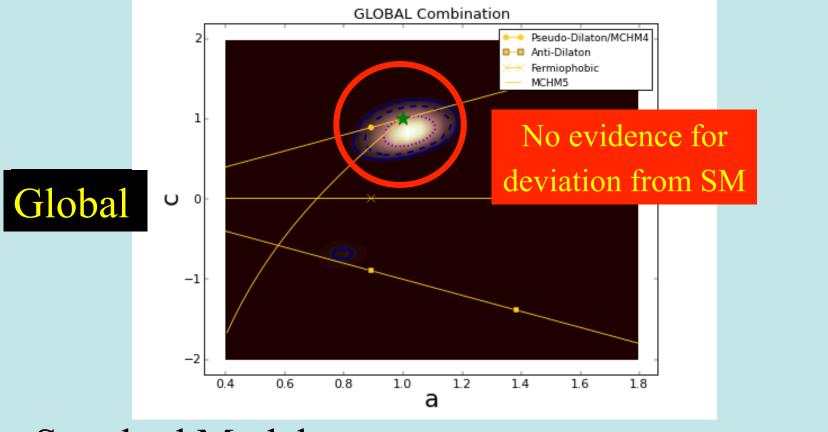
 No indication of any significant deviation from the Standard Model predictions

Elementary Higgs or Composite?

- Higgs field: $<0|H|0> \neq 0$
- Quantum loop problems

Cut-off $\Lambda \sim 1$ TeV with Supersymmetry?

- Fermion-antifermion condensate
- Just like QCD, BCS superconductivity
- Top-antitop condensate? needed m_t > 200 GeV

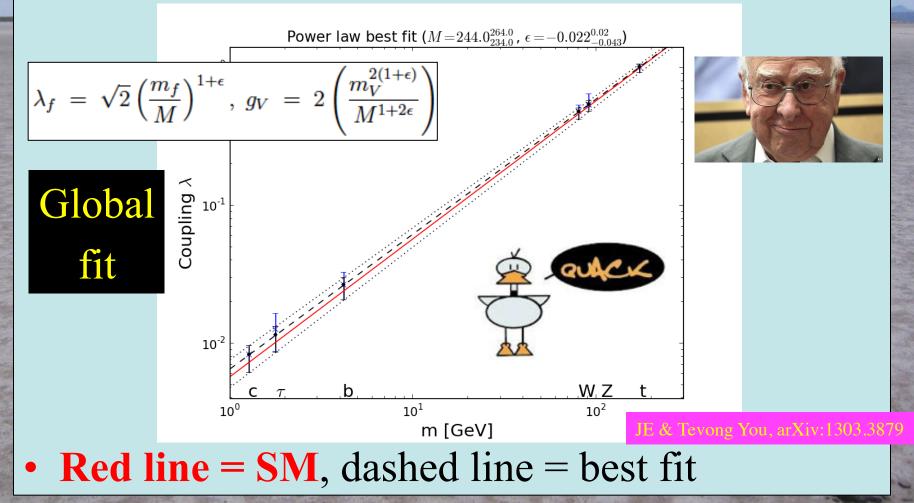

New technicolour force?

- Heavy scalar resonance?
- Inconsistent with

precision electroweak data?

Global Analysis of Higgs-like Models

• Rescale couplings: to bosons by a, to fermions by c

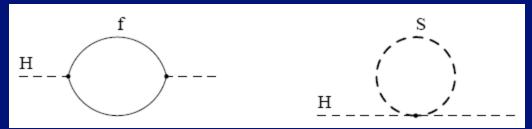


JE & Teyong You, arXiv:1303.3879

• Standard Model: a = c = 1

It Walks and Quacks like a Higgs

• Do couplings scale ~ mass? With scale = v?

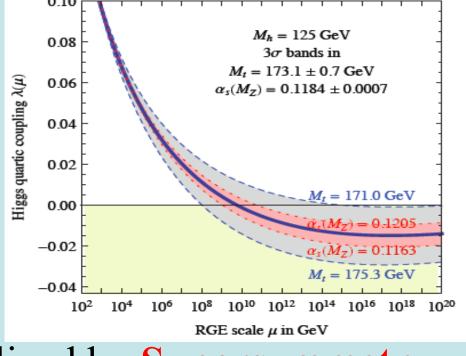

What else is there?

Supersymmetry

- Successful prediction for Higgs mass
 Should be < 130 GeV in simple models
- Successful predictions for Higgs couplings
 Should be within few % of SM values
- Could explain the dark matter
- Naturalness, GUTs, string, ... (???)

Loop Corrections to Higgs Mass²

• Consider generic fermion and boson loops:

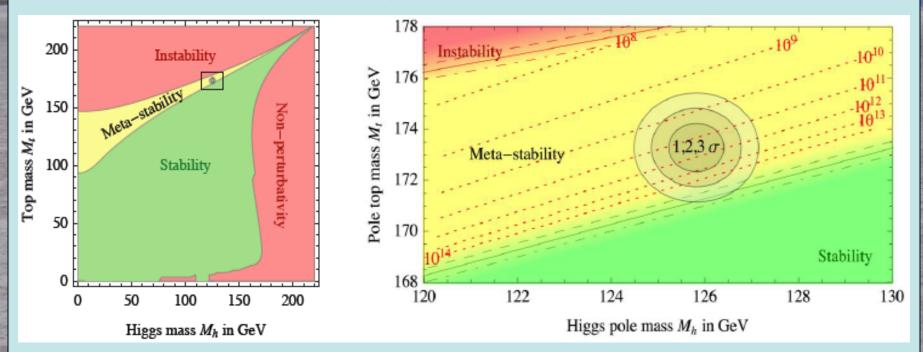

• Each is quadratically divergent: $\int^{\Lambda} d^4k/k^2$

$$\Delta m_H^2 = -\frac{y_f^2}{16\pi^2} [2\Lambda^2 + 6m_f^2 \ln(\Lambda/m_f) + ...]$$
$$\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} [\Lambda^2 - 2m_S^2 \ln(\Lambda/m_S) + ...]$$

• Leading divergence cancelled if $\lambda_S = y_f^2 \ge 2$ Supersymmetry!

Theoretical Constraints on Higgs Mass

- Large $M_h \rightarrow$ large self-coupling \rightarrow blow up at low-energy scale Λ due to renormalization
- Small: renormalization due to t quark drives quartic coupling < 0 at some scale Λ
 → vacuum unstable

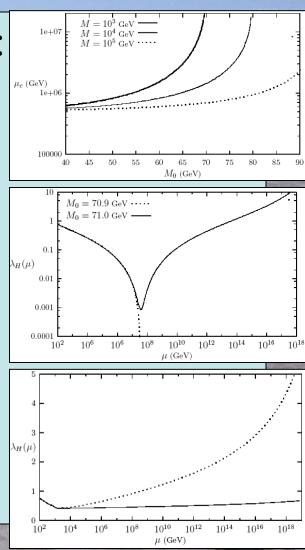


Degrassi, Di Vita, Elias-Miro, Giudice, Isodori & Strumia, arXiv:1205.6497

• Vacuum could be stabilized by **Supersymmetry**

Vacuum Instability in the Standard Model

• Very sensitive to m_t as well as M_H



Present vacuum probably metastable with lifetime
 >> age of the Universe

ita, Elias-Miro, Giudice, Isodori & Strumia, arXiv

How to Stabilize a Light Higgs Boson?

- Top quark destabilizes potential: introduce stop-like scalar: $\mathcal{L} \supset M^2 |\phi|^2 + \frac{M_0}{v^2} |H|^2 |\phi|^2$
- Can delay collapse of potential:
- But new coupling must be fine-tuned to avoid blow-up:
- Stabilize with new fermions:
 just like Higgsinos
- Very like Supersymmetry!

If you have a Problem ...

• ... postulate a new particle:

- QM and Special Relativity:
- Nuclear spectra:
- Continuous spectrum in β decay:
- Nucleon-nucleon interactions:
- Absence of lepton number violation:
- Flavour SU(3):
- Flavour SU(3):
- FCNC:
- CP violation:
- Strong dynamics:
- Weak interactions:
- Renormalizability:

- Hierarchy:

Antimatter Neutron Neutrino Pion Second neutrino Ω^{-} Quarks Charm Third generation Gluons W^{\pm}, Z^0 Η (48 years)

Supersymmetry? (40 years)

Dark Matter in the Universe

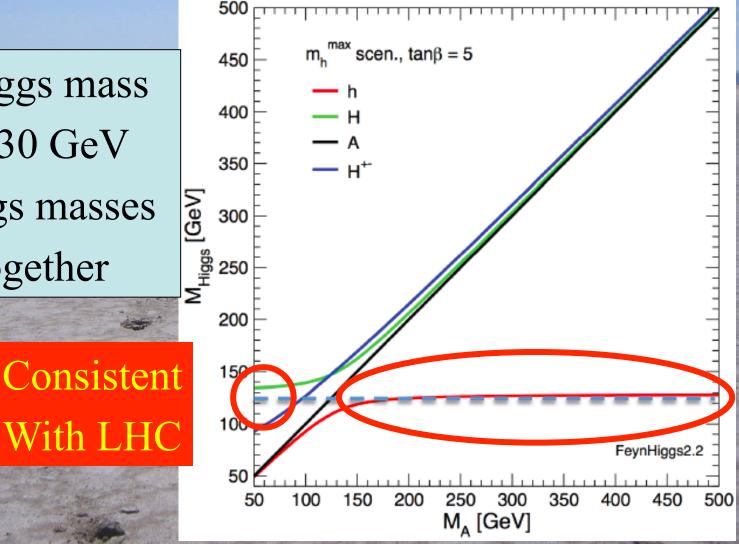
Astronomers say that most of the matter in the Universe is invisible Dark Matter 9

Supersymmetric particles ?

We shall look for them with the LHC

Higgs Bosons in Supersymmetry

- Need 2 complex Higgs doublets (cancel anomalies, form of SUSY couplings)
- 8 3 = 5 physical Higgs bosons
 Scalars h, H; pseudoscalar A; charged H[±]
- Lightest Higgs < MZ at tree level:


 $M_{\rm H,h}^2 = \frac{1}{2} \left[M_{\rm A}^2 + M_{\rm Z}^2 \pm \sqrt{(M_{\rm A}^2 + M_{\rm Z}^2)^2 - 4M_{\rm Z}^2 M_{\rm A}^2 \cos^2 2\beta} \right]$

• Important radiative corrections to mass:

$$G_{\mu} m_{\mathrm{t}}^{4} \ln \left(\frac{m_{\tilde{\mathrm{t}}_{1}} m_{\tilde{\mathrm{t}}_{2}}}{m_{\mathrm{t}}^{2}} \right) \Delta M_{\mathrm{H}} |_{\mathrm{TH}} \sim 1.5 \mathrm{~GeV}$$

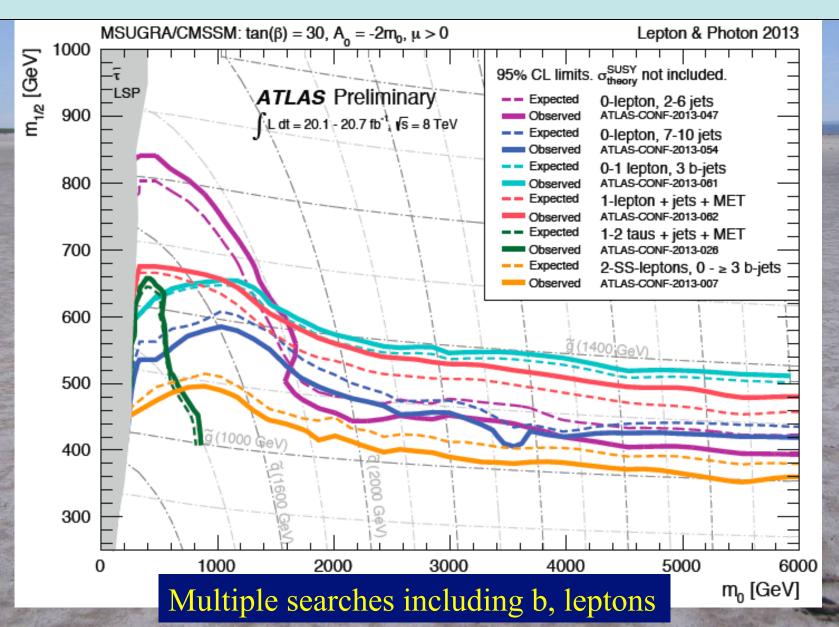
MSSM Higgs Masses & Couplings

Lightest Higgs mass up to ~ 130 GeV Heavy Higgs masses bunch together

			Observable	Source	Constraint	
			m_t [GeV]	Th./Ex. [39]	173.2 ± 0.90	
	_		$\Delta \alpha_{\rm had}^{(5)}(m_{\rm Z})$	[38]	0.02749 ± 0.00010	
	Doto		$M_Z [GeV]$	[40]	91.1875 ± 0.0021	
	Data		Γ_Z [GeV]	[24] / [40]	$2.4952 \pm 0.0023 \pm 0.001_{SUSY}$	
			σ_{had}^0 [nb]	[24] / [40]	$\frac{2.4352 \pm 0.0023 \pm 0.0018089}{41.540 \pm 0.037}$	
			R _l	[24] / [40]	41.540 ± 0.037 20.767 ± 0.025	
			$A_{\rm fb}(\ell)$	[24] / [40]	0.01714 ± 0.00095	
			$A_{\ell}(P_{\tau})$	[24] / [40]	0.1465 ± 0.0032	
	· · · ·	14	$R_{\rm b}$	[24] / [40]	0.21629 ± 0.00066	
Electroweak precision			Rc	[24] / [40]	0.1721 ± 0.0030	
			Afb(b)	[24] / [40]	0.0992 ± 0.0016	
			$A_{\rm fb}(c)$	[24] / [40]	0.0707 ± 0.0035	
	servables	ALC: NO.	A _b	[24] / [40]	0.923 ± 0.020	
		-	Ac	[24] / [40]	0.670 ± 0.027	
• Flavour physics observables			$A_{\ell}(SLD)$	[24] / [40]	0.1513 ± 0.0021	
			$\sin^2 \theta_{\rm w}^{\ell}(Q_{\rm fb})$	[24] / [40]	0.2324 ± 0.0012	
			M_W [GeV]	[24] / [40]	$80.399 \pm 0.023 \pm 0.010_{\rm SUSY}$	
			$BR_{b \rightarrow s\gamma}^{EXP}/BR_{b \rightarrow s\gamma}^{SM}$	[41] / [42]	$1.117 \pm 0.076_{EXP}$	
			0-7877 0-787		$\pm 0.082_{\rm SM} \pm 0.050_{\rm SUSY}$	
Deviation from Stand			and Madal.	[27] / [37]	$(< 1.08 \pm 0.02_{\rm SUSY}) \times 10^{-8}$	
	Deviation from Sta	ina	ard Moder.	[27] / [42]	$1.43 \pm 0.43_{\rm EXP+TH}$	
V • 2	- <u>-</u>		4	[97] / [49]	$<(4.6\pm0.01_{\rm SUSY})\times10^{-9}$	
$g_{\mu} - 2$ Supersymmetry at low			scale. or'	[43]/ [42]	0.99 ± 0.32	
TT		VOX	$DR_{K \to \mu\nu}/DR_{K \to \mu\nu}$	[27] / [44]	$1.008 \pm 0.014_{\rm EXP+TH}$	
• H1	ggs mass		$BR_{K \to \pi \nu \bar{\nu}}^{EXP} / BR_{K \to \pi \nu \bar{\nu}}^{SM}$	[45]/ [46]	< 4.5	
	88~		$\Delta M_{B_*}^{\text{EXP}} / \Delta M_{B_*}^{\text{SM}}$	[45] / [47,48]	$0.97 \pm 0.01_{\rm EXP} \pm 0.27_{\rm SM}$	
Dark matter			$\frac{(\Delta M_{B_g}^{EXP} / \Delta M_{B_g}^{SM})}{(\Delta M_{B_g}^{EXP} / \Delta M_{B_g}^{SM})}$	[27] / [42, 47, 48]	$1.00 \pm 0.01_{\rm EXP} \pm 0.13_{\rm SM}$	
		$\Delta \epsilon_{K}^{\text{EXP}} / \Delta \epsilon_{K}^{\text{SM}}$	[45] / [45 49]	$1.08 \pm 0.14_{\rm EXP+TH}$		
			$a^{\text{EXP}} = a^{\text{OM}}$	[49] / [38, 50]	$(30.2 \pm 8.8 \pm 2.0_{SUST}) \times 10^{-10}$	
• LHC			$\overline{M} = 12$	$5.6 \pm 0.3 \pm$		
			$=$ $M_{\rm H}$ -12	$5.0 \pm 0.5 \pm$	$1.5 \text{ GeV} = \frac{1000017}{56 \pm 0.017} \text{J}_{\text{JSY}}$	
			σ_p	[23]	$(m_{12}, \frac{SL}{p})$ plane	
		- And	jets $+ E_T$	[16, 18]	$(m_0, m_{1/2})$ plane	
MasterCo	de: O.Buchmueller, JE et al.	all and	$H/A, H^{\pm}$	[19]	$(M_A, \tan\beta)$ plane	
		They are	and the second se		A REAL PROPERTY AND	

Minimal Supersymmetric Extension of Standard Model (MSSM)

• Particles + spartners

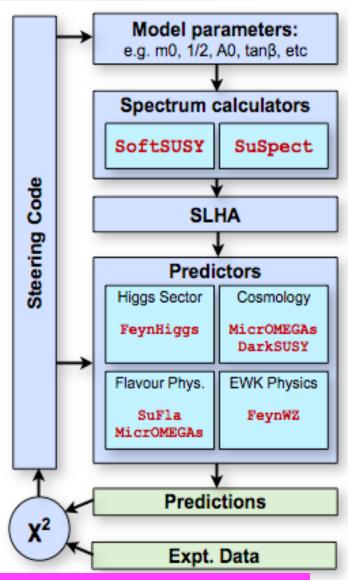

$$\begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} e.g., \ \begin{pmatrix} \ell \ (lepton) \\ \tilde{\ell} \ (slepton) \end{pmatrix} or \begin{pmatrix} q \ (quark) \\ \tilde{q} \ (squark) \end{pmatrix} \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix} e.g., \ \begin{pmatrix} \gamma \ (photon) \\ \tilde{\gamma} \ (photino) \end{pmatrix} or \begin{pmatrix} g \ (gluon) \\ \tilde{g} \ (gluino) \end{pmatrix}$$

- 2 Higgs doublets, coupling μ , ratio of v.e.v.' s = tan β
- Unknown supersymmetry-breaking parameters: Scalar masses m₀, gaugino masses m_{1/2}, trilinear soft couplings A_λ bilinear soft coupling B_μ
- Often assume universality:

Single m_0 , single $m_{1/2}$, single A_{λ} , B_{μ} : not string?

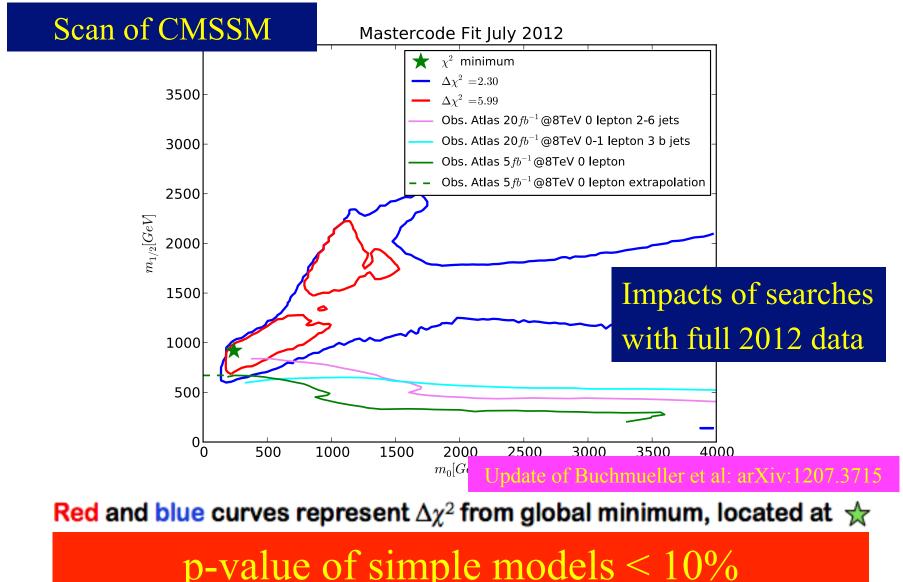
- Called constrained* MSSM = CMSSM (* at what scale?)
- Minimal supergravity (mSUGRA) predicts gravitino mass: $m_{3/2} = m_0$ and relation: $B_{\mu} = A_{\lambda} - m_0$

Searches with 8 TeV Data

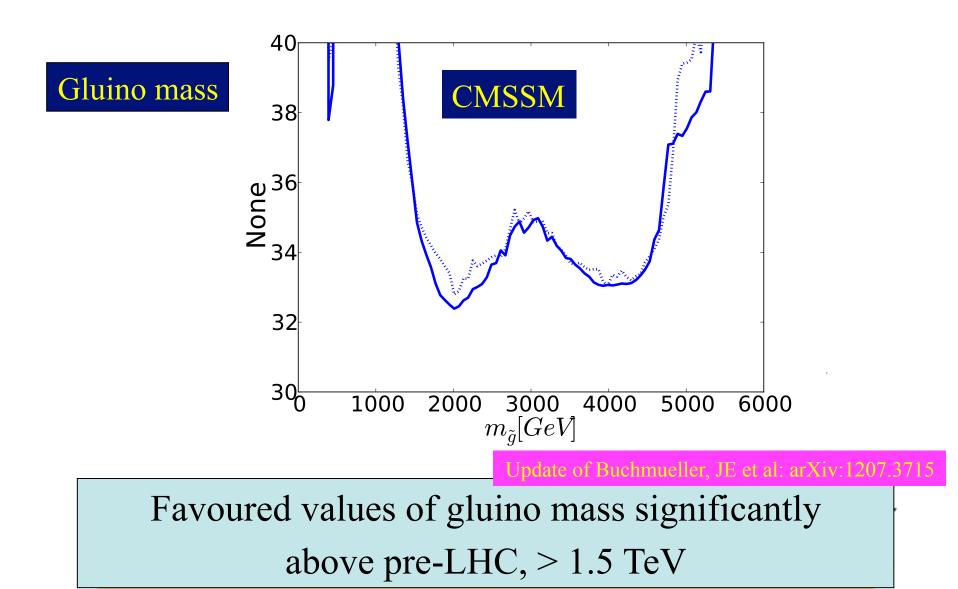


MasterCode

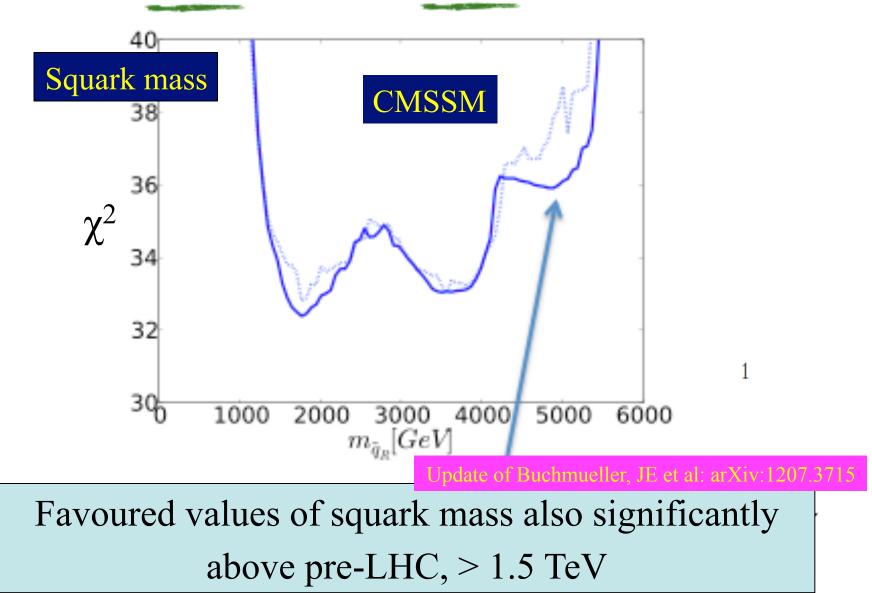
Combines diverse set of tools


- different codes : all state-of-the-art
 - Electroweak Precision (FeynWZ)
 - Flavour (SuFla, micrOMEGAs)
 - Cold Dark Matter (DarkSUSY, micrOMEGAs)
 - Other low energy (FeynHiggs)
 - Higgs (FeynHiggs)
- different precisions (one-loop, two-loop, etc)
- different languages (Fortran, C++, English, German, Italian, etc)
- different people (theorists, experimentalists)
- Compatibility is crucial! Ensured by
 - close collaboration of tools authors
 - standard interfaces

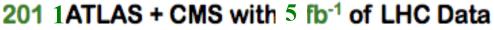
O. Buchmueller, R. Cavanaugh, M. Citron, A. De Roeck, M.J. Dolan, J.E., H. Flacher, S. Heinemeyer, G. Isidori, J. Marrouche, D. Martinez Santos, S. Nakach, K.A. Olive, S. Rogerson, F.J. Ronga, K.J. de Vries, G. Weiglein

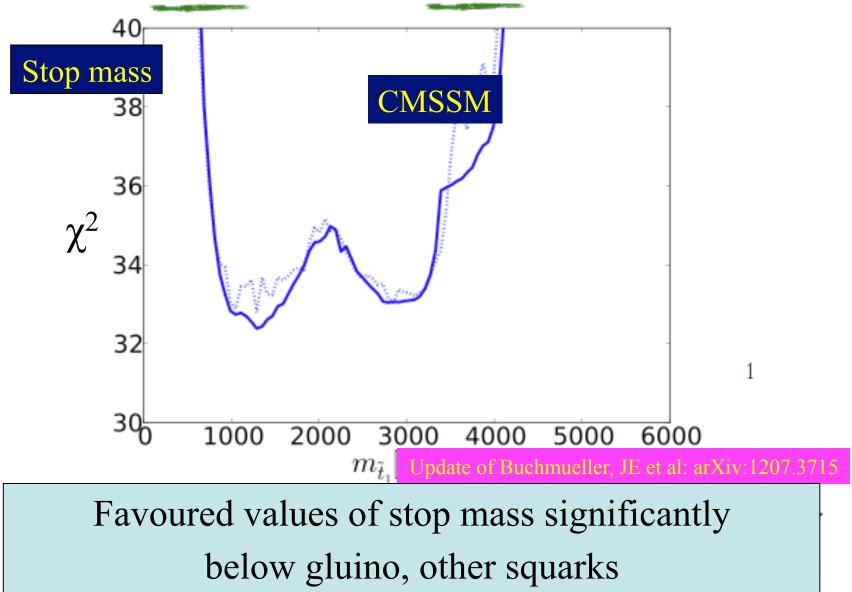


201 2ATLAS + CMS with 5 fb⁻¹ of LHC Data

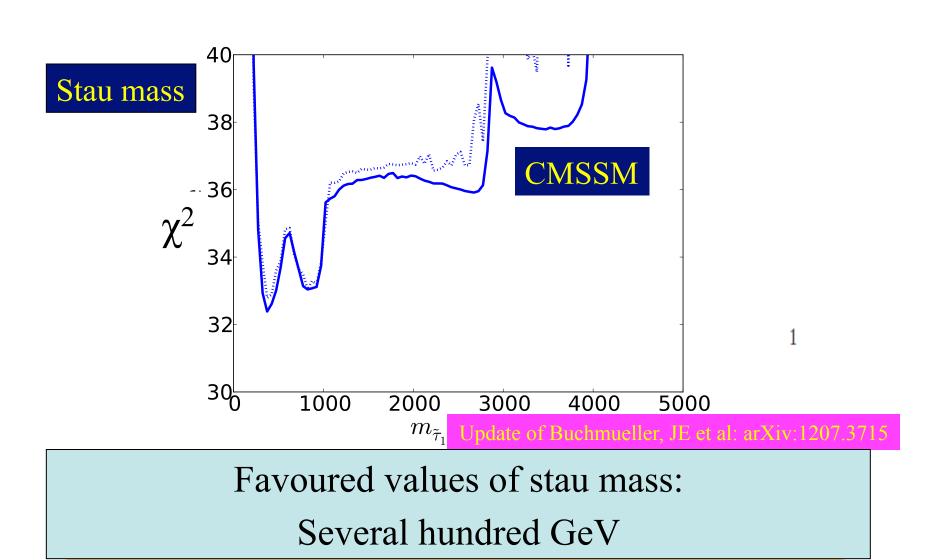


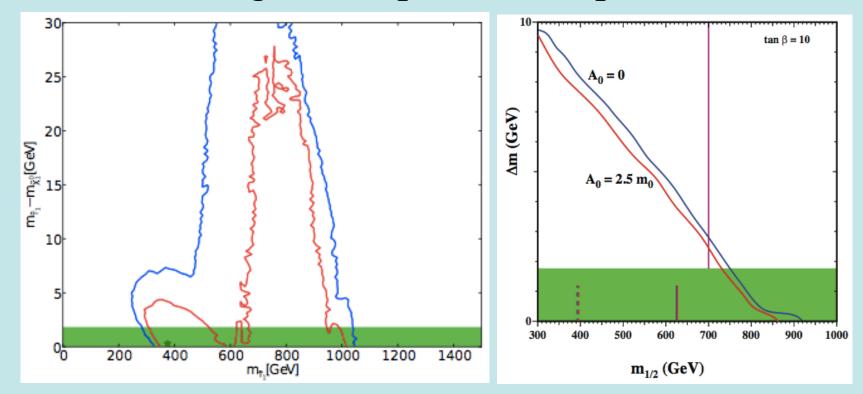
201 1ATLAS + CMS with 5 fb⁻¹ of LHC Data



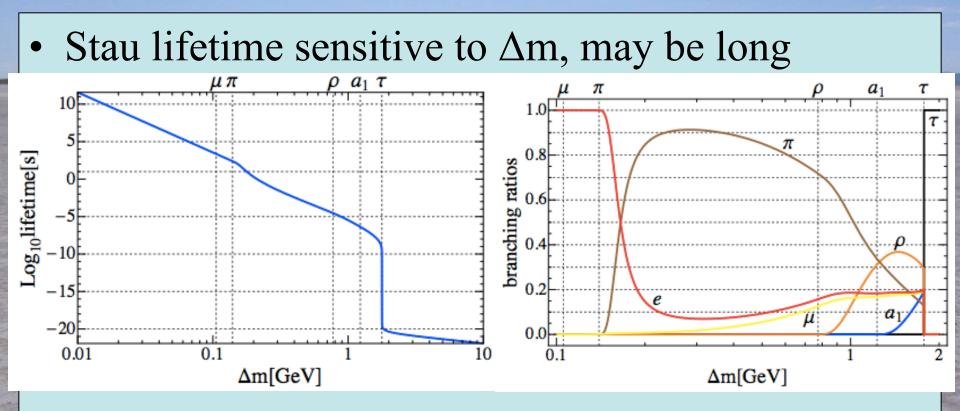


201 1ATLAS + CMS with 5 fb⁻¹ of LHC Data





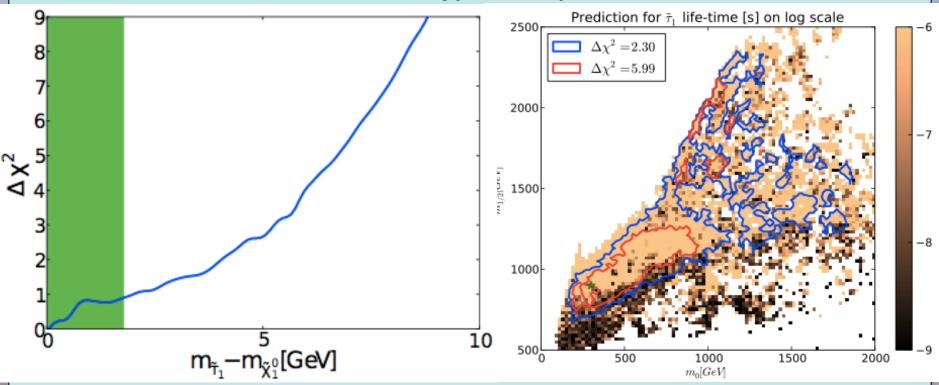
201 1ATLAS + CMS with 5 fb⁻¹ of LHC Data


What remains for the CMSSM?

- on, JE, Luo, Marrouche, Olive, de Vries: arXiv:1212.2886
- Favoured regions of parameter space

- Focus on the coannihilation strip
- Small mass difference long-lived stau?

What remains for the CMSSM?

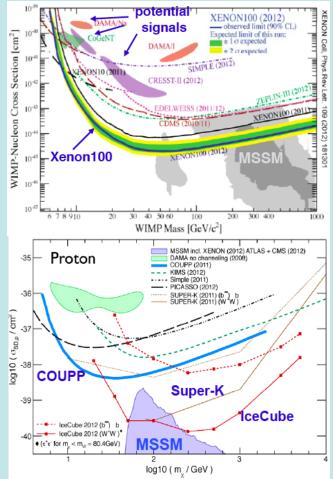


- May decay inside or outside the detector
- Decays into 1 or 3 charged particles, also neutrals

arrouche. Olive

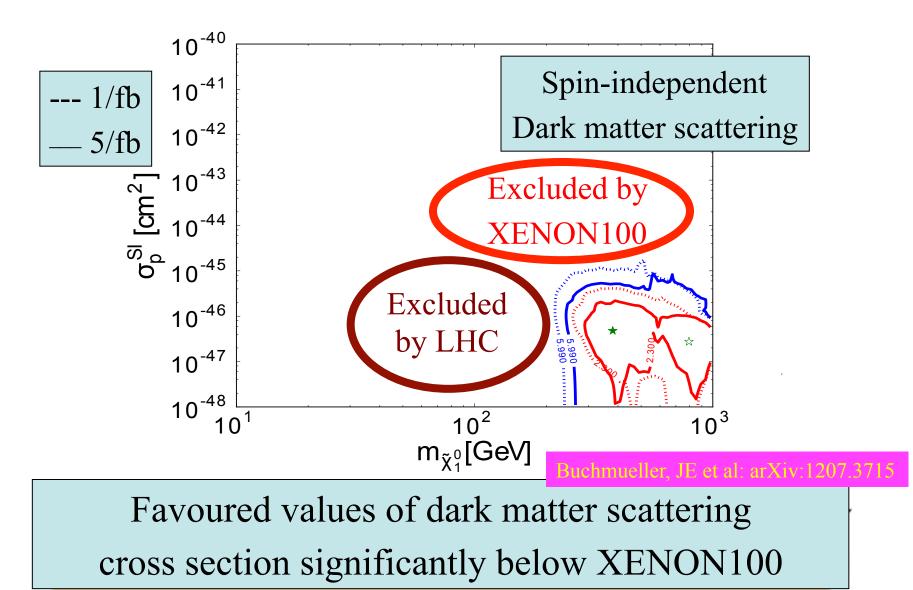
Search for long-lived Staus?

• Small Δm favoured in χ^2 analysis

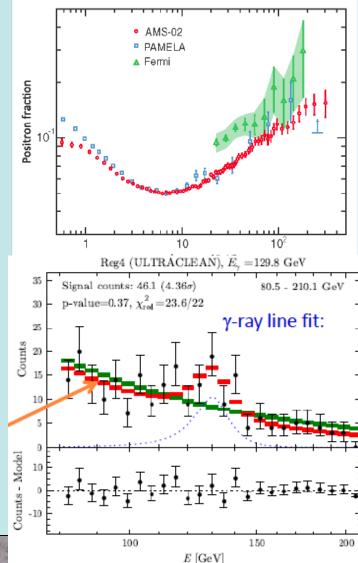


Citron, JE, Luo, Marrouche, Olive, de Vries: arXiv:1212

• May decay inside or outside the detector


Direct WIMP Searches

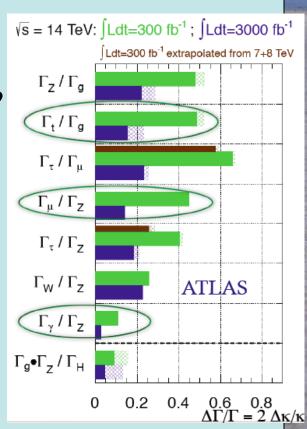
- Direct search for dark matter scattering:
 - Spin-independent and -dependent
 - σ limits from XENON100, COUPP
 - CoGeNT & DAMA well excluded
 - 3 CDMS candidates (~ threshold, compatibility with XENON100?)
 - Cf, monojet searches at LHC:
 - LHC wins for interactions with quarks and gluons
- XENON, DARWIN, EURECA



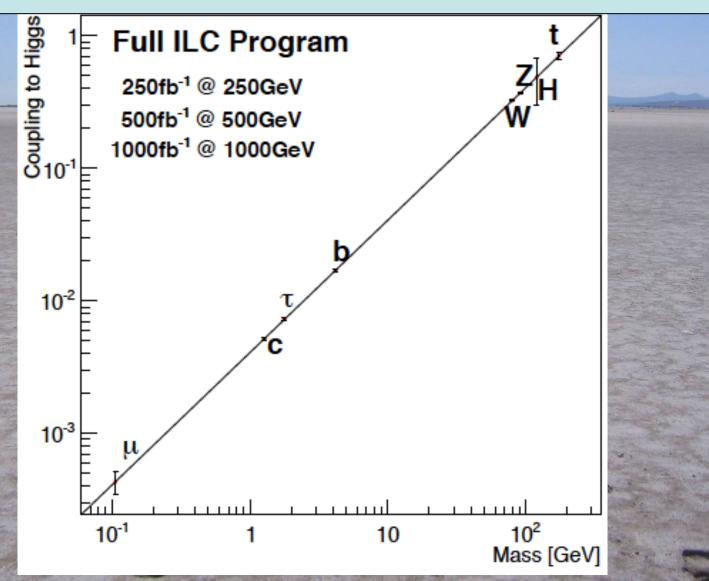
201 2 ATLAS + CMS with 5 fb⁻¹ of LHC Data

Indirect WIMP Searches

- Rising positron fraction?
 - Require large boost factor
 - Limits from γ rays
 - No antiproton signal
- Fermi γ line @ 130 GeV: 4.6 σ
 - $(3.3 \sigma \text{ with look-elsewhere effect})$
 - Need σ > SUSY?
 - Seen from earth's limb!
 - **Falsifies WIMP hypothesis?**

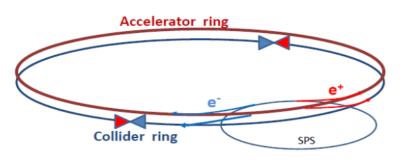

Some Questions

- What is it?
 - -Higgs or ...?
- What else is there?
 - -Supersymmetry or ...?
- What next?
 - –A Higgs factory or …?


What Next: A Higgs Factory?

To study the 'Higgs' in detail:

- The LHC
 - Rethink LHC upgrades in this perspective?
- A linear collider?
 - ILC up to 500 GeV
 - CLIC up to 3 TeV
 - (Larger cross section at higher energies)
- A circular e⁺e⁻ collider: LEP3, TLEP
 - A photon-photon collider: SAPPHiRE
- A muon collider



Coupling Measurements @ ILC

What Higgs Factory?

Circular e⁺e⁻ colliders

New large tunnel

could also be used

for pp collisions

E_{CM} up to 100 TeV

c.g., LEP3:

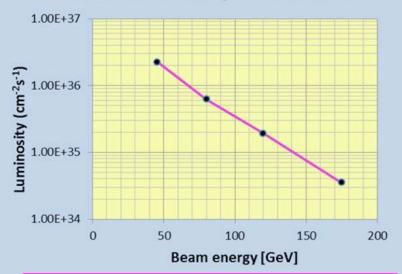
- Vs = 240 GeV in the LHC tunnel to produce e⁺e⁻ \rightarrow ZH events
- Short beem lifetime (10 mins) requires two ring scheme
 - Top up injection from 240 GeV "accelerator ring"
 - "Collider ring" supplying 2-4 interaction points L = 10³⁴ cm⁻²s⁻¹ per IP
 Re-use ATLAS and CMS and/or install two dedicated LC-type detectors
- Current design uses arc optics from LHeC ring
 - Dipole fill factor 0.75 (smaller than for LEP)
 - increased synchrotron energy loss (7 GeV per turn)
 - redesign possible?
- e[±] polarization probably not possible at Vs = 240 GeV
- In principle space is available to install compact e⁺e⁻ facility on top
 - Is this really feasible?
 - Alternatively wait until completion of LHC physics programme and removal of LHC ring?
- SuperTRISTAN is a proposal for a similar machine in Japan

E.g., TLEP:


TLEP Steering Group, arXiv:1208.0504, 1305.6498

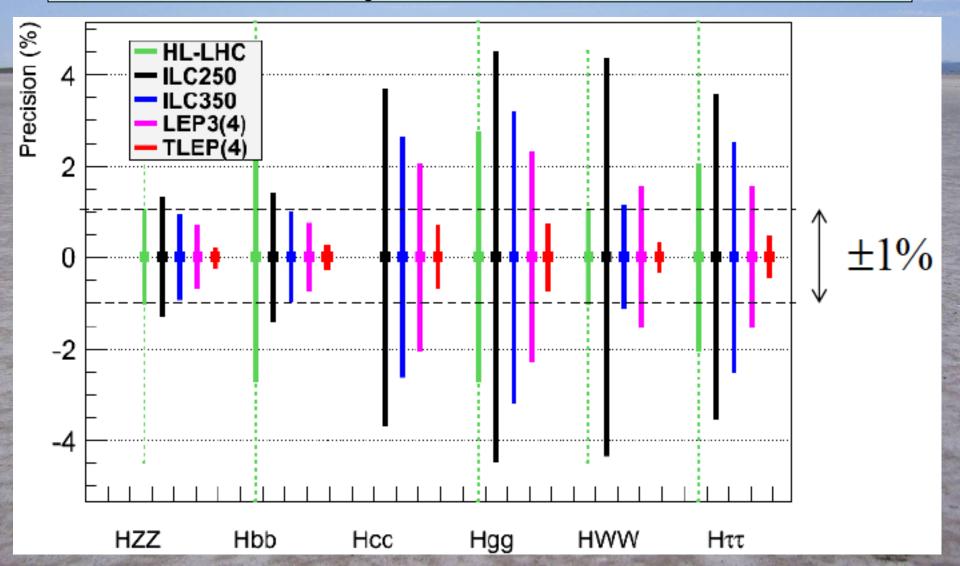
v/s = 350 GeV in 80 km LHC tunnel to reach thresholds for top pair and e⁺e⁻ $\rightarrow vvWW \rightarrow vvH$

Possible Layouts for TLEP



Possible Luminosities of e⁺e⁻ Colliders

TLEP
Parameters &
Performance at
different
energies


TLEP luminosity × number of IPs

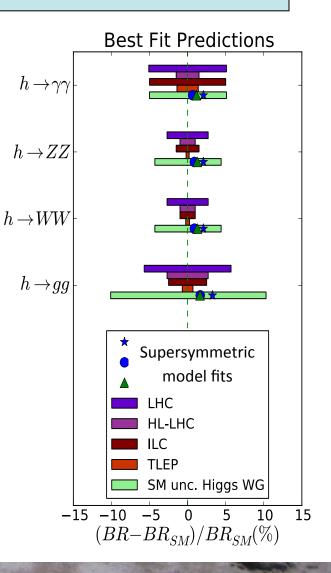
TLEP Steering Group, arXiv:1306.5981

	TLEP Z	TLEP W	TLEP H	TLEP t	
E _{beam} [GeV]	45	80	120	175	
circumf. [km]	80	80	80	80	
beam current [mA]	1180	124	24.3	5.4	
#bunches/beam	4400	600	80	12	
#e-/beam [10 ¹²]	1960	200	40.8	9.0	
horiz. emit. [nm]	30.8	9.4	9.4	10	
vert. emit. [nm]	0.07	0.02	0.02	0.01	
bending rad. [km]	9.0	9.0	9.0	9.0	
Κ _ε	440	470	470	1000	
mom. c. $\alpha_{c} [10^{-5}]$	9.0	2.0	1.0	1.0	
P _{loss,SR} /beam [MW]	50	50	50	50	
<u>β*, [m]</u>	0.5	0.5	0.5	1	
<u>β*, [cm]</u>	0.1	0.1	0.1	0.1	
<u>σ*, [um]</u>	124	78	68	100	
<u>σ*</u> _y [μm]	0.27	0.14	0.14	0.10	
hourglass F _{hg}	0.71	0.75	0.75	0.65	
E ^{SR} loss/turn [GeV]	0.04	0.4	2.0	9.2	
V _{RF} , tot [GV]	2	2	6	12	
🛛 max,RF [%]	4.0	5.5	9.4	4.9	
<i>ξ_x</i> /IP	0.07	0.10	0.10	0.10	
ξ _y /IP	0.07	0.10	0.10	0.10	
fs [kHz]	1.29	0.45	0.44	0.43	
E _{acc} [MV/m]	3	3	10	20	
eff. RF length [m]	600	600	600	600	
f _{RF} [MHz]	700	700	700	700	
$\frac{\delta^{\text{SR}}_{\text{rms}}[\%]}{\delta^{\text{SR}}_{\text{rms}}[\%]}$	0.06	0.10	0.15	0.22	
	0.19	0.22	0.17	0.25	
$\mathcal{L}/IP[10^{32} \text{cm}^{-2} \text{s}^{-1}]$	5600	1600	480	130	
number of ins	1	1	4	4	
beam lifet. [min]	67	25	16	20	

Comparison of Possible Higgs Factory Measurements

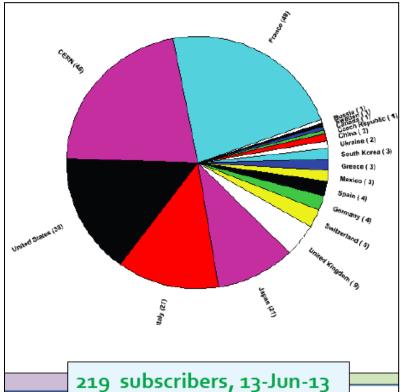
Higgs Factory Summary

precision


Best

·						· · · · · · · · · · · · · · · · · · ·
Accelerator	LHC	HL-LHC	ILC (250)	ILC	LEP3	TLEP
→Physical	300fb ⁻¹ /exp	3000fb ⁻¹	250 fb ⁻¹	(250+350+1000)	240	240 +350
quantity \downarrow		/exp			4 IP	4 IP
Approx. date	2021	2030	2035	2045	2035	2035
N _H	1.7×10^{7}	1.7 x 10 ⁸	5 10 ⁴ ZH	(10 ⁵ ZH)	4 10⁵ZH	2 10 ⁶ ZH
				(1.4 10 ⁵ Hvv)		
m _H (MeV)	100	50	35	35	26	7
$\Delta \Gamma_{\rm H/} \Gamma_{\rm H}$			10%	3%	4%	1.3%
$\Delta \Gamma_{inv/}\Gamma_{H}$	Indirect	Indirect	1.5%	1.0%	0.35%	0.15%
	(30%?)	(10% ?)				
Δg _{Hγγ} /g _{Hγγ}	6.5 - 5.1%	5.4 – 1.5%		5%	3.4%	1.4%
$\Delta g_{Hgg}/g_{Hgg}$	11 - 5.7%	7.5 – 2.7%	4.5%	2.5%	2.2%	0.7%
∆g _{Hww} /g _{Hww}	5.7 – 2.7%	4.5 - 1.0%	4.3%	1%	1.5%	0.25%
Δg _{HZZ} /g _{HZZ}	5.7 – 2.7%	4.5 - 1.0%	1.3%	1.5%	0.65%	0.2%
Δg _{ннн} /g _{ннн}	+	< 30%	ł	~30%		
		(2 exp.)				
Δg _{Hµµ} /g _{Hµµ}	<30	<10			14%	7%

Impact of Higgs Factory?


- Predictions of current best fits in simple SUSY models
- Current uncertainties in SM calculations [LHC Higgs WG]
- Comparisons with
 - LHC
 - HL-LHC
 - ILC
 - TLEP
- Don't decide before LHC 13/4

TLEP Physics Study

Experimental Studies : Preliminary Structure (Being discussed)

- 11 working groups
 - WG1 : Electroweak Physics at the Z pole
 - WG2 : Di-boson physics : W mass measurement, ...
 - WG₃ : H(126) properties
 - WG4 : Top Quark Physics
 - WG5 : b, c and τ physics
 - WG6 : QCD and γγ physics
 - WG7 : Rare Physics
 - WG8 : Experimental environment
 - WG9 : Offline software and computing
 - WG10 : Online software and computing
 - WG11 : Detector designs

More information, registration at http://tlep.web.cern.ch

Part of a Vision for the Future

- A large circular tunnel
 - Circumference ~ 80 to 100 km
- Could accommodate TLEP and VHE-LHC $-E_{CM}$ up to 100 TeV with 15 Tesla magnets
- Could be sited around Geneva
 - Interest in China, US
- TLEP Study Group under way
- Timely to study VHE-LHC

Summary

- Beyond any reasonable doubt, the LHC has discovered a (the) Higgs boson
- A big challenge for theoretical physics!
- The best option: supersymmetry
- The LHC may discover supersymmetry when it restarts at ~ 13 TeV
- If it **does**, priority will be to study it
- If it does **not**, natural to study the Higgs
- Either way, TLEP/VHE-LHC offers vision