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Hypothesis testing versus goodness-of-fit (1)

after the Higgs talk, Geoff asked a question about 0~ /0" discrimination:
@ on p53, the upper plot shows distributions of a BDT discriminator for

e the 0" hypothesis
o the 0~ hypothesis
o the data

@ the data is “close” to the distributions for both hypotheses

@ the lower plot shows the distributions of In (£(0")/£(07))
for both hypotheses, and the value from data

@ these show fairly strong discrimination between 0" and 0~
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after the Higgs talk, Geoff asked a question about 0~ /0" discrimination:
@ on p53, the upper plot shows distributions of a BDT discriminator for

e the 0T hypothesis
o the 0~ hypothesis
o the data

@ the data is “close” to the distributions for both hypotheses

@ the lower plot shows the distributions of In (£(0")/£(07))
for both hypotheses, and the value from data

@ these show fairly strong discrimination between 0" and 0~
@ there is an apparent contradiction between the two plots

@ in fact, on closer inspection they appear to be consistent;
the key is the difference between two related statistical tests:
e goodness-of-fit, the thing we most often do by eye, and
e hypothesis testing, which the ATLAS analysis is doing
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Hypothesis testing versus goodness-of-fit (2)

there are seven bins: after normalisation, possible datasets fill a 6D space
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Hypothesis testing versus goodness-of-fit (2)

The example is simple enough that one can check the plot by eye,
and calculate the result by hand (ignoring systematics)
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@ cf. ~ 2.1 in the ATLAS result, with systematics
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+0.5 3.1 5.9 7 +1.705

+2.479

@ cf. ~ 2.1 in the ATLAS result, with systematics

@ note luck in the actual dataset obtained is a factor:
are fluctuations along the privileged axis? in the right direction?
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Hypothesis testing versus goodness-of-fit (recap)

there are seven bins: after normalisation, possible datasets fill a 6D space
any test statistic corresponds to an ordering principle that assigns
a number g to every point in the 6D space, collapsing it onto a line
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Hypothesis testing versus goodness-of-fit (3)

There is a close analogy which requires no calculation:
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Hypothesis testing versus goodness-of-fit (3)

There is a close analogy which requires no calculation:
Gaussian measurements of an underlying constant
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o likewise < 10% of H; cases will fluctuate to a H_-like result
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f>0.2; z>0.40/0.14 = 2.86 !
@ likewise < 10% of H, cases will fluctuate to a H_-like result
@ j.e. it may be essential to be correct, but it's also important to be lucky
Exercise: Show that the £/L technique gives an equivalent answer.
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