

Tracking with silicon detectorAttilio AndreazzaUniversità di Milano and INFN

CoEPP Tropical Workshop 2013

Sunday 7 July Caims Colonial Club Resort

Istituto Nazionale di Fisica Nucleare

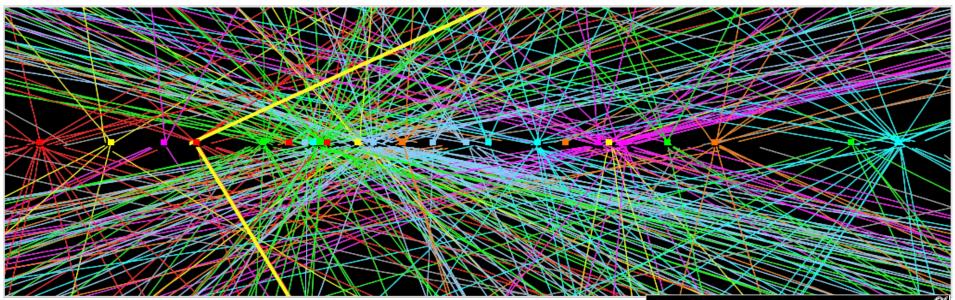
Outline

- 1. What is a silicon tracking system
- 2. Track parameters and resolutions
- **3. Silicon detectors**
- 4. Tracking systems
- 5. Understanding track fitting (optional)
- 6. Performance and applications

WHAT IS A (SILICON) TRACKING SYSTEM?

ATLAS Event: Z→µµ at high pileup

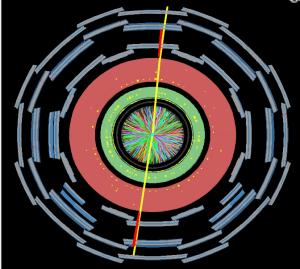
di Fisica Nucleare



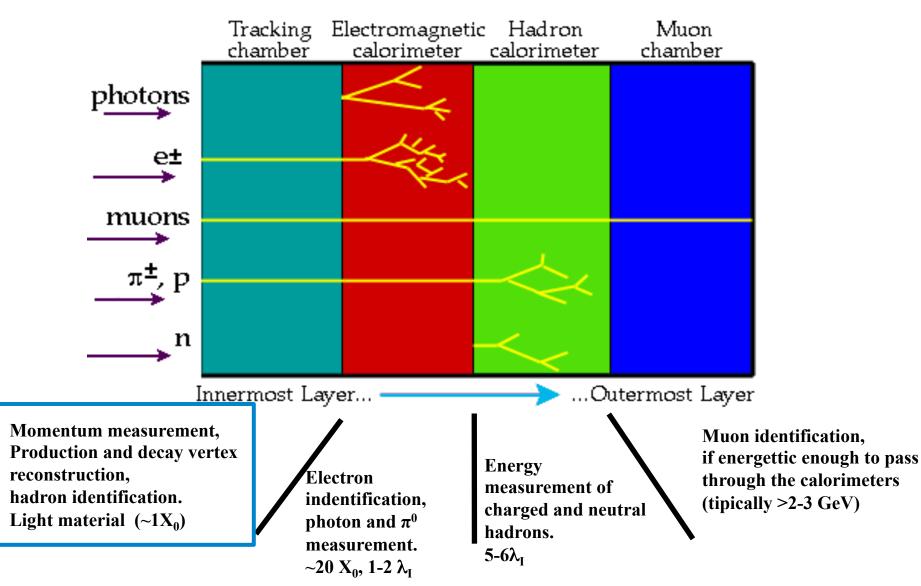
Reconstruction of charged particles produced in particle physics experiments:

with high granularity with high precision: position down to O(10 μm) momentum down to 10⁻³

Unique way to access the region of the interaction vertex (pileup, short lived particles)



A particle physics detector

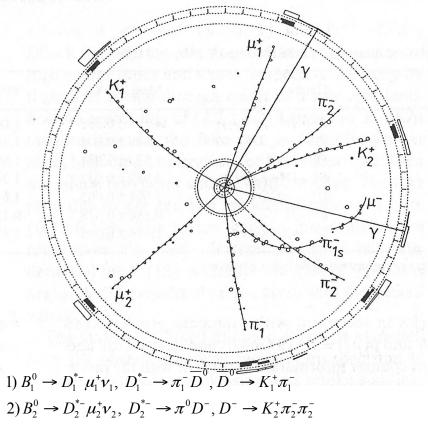


Cairns, 8 July 2013

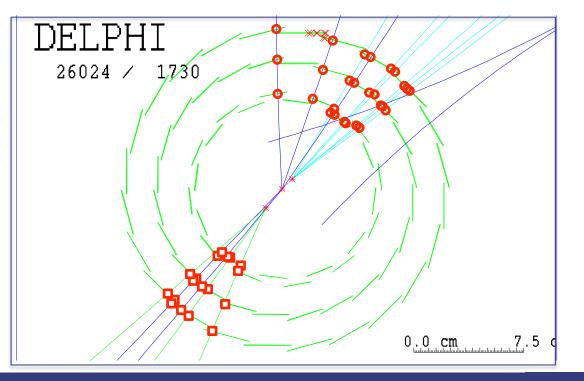
A. Andreazza - Silicon Tracking

5

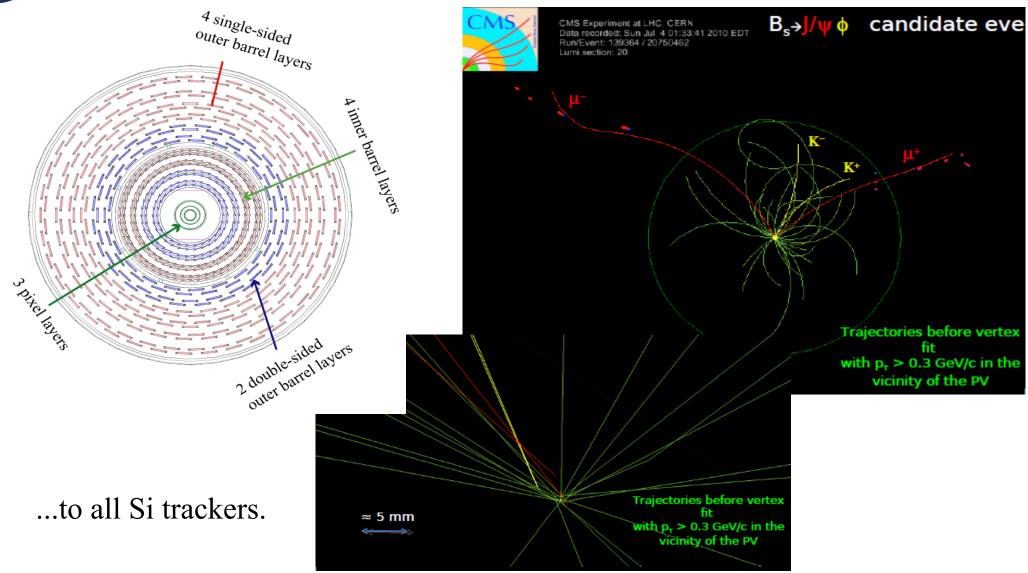
Evolution of tracking systems



...through the addition of few very precise Si-based measurements near to the interaction region... From continuous tracking with gas detector...



Evolution of tracking systems



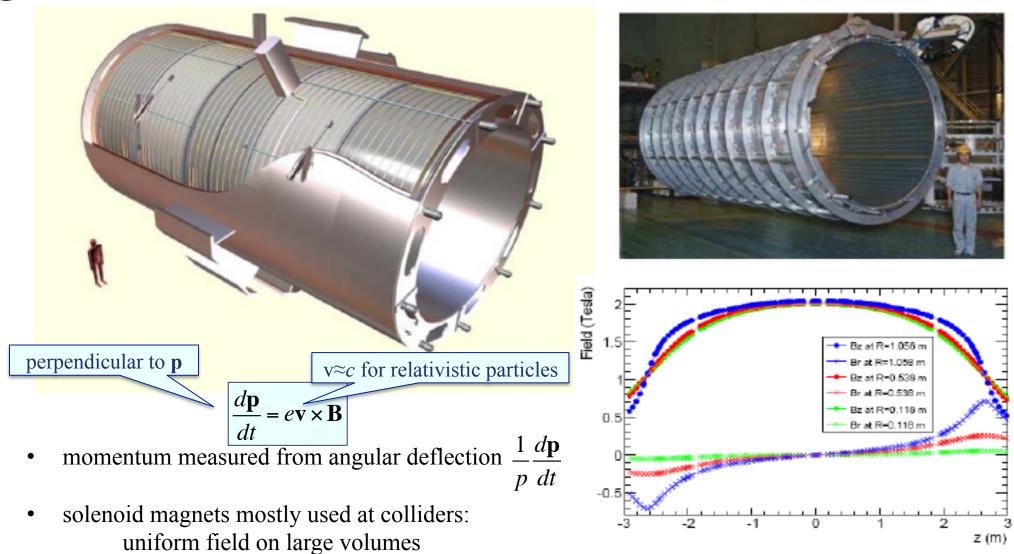
References

- A lot of the contents of today slides is taken from:
 - F. Ragusa, New Journal of Physics 9 (2007) 336
 - The lectures given at the CERN EDIT 2011 School (especially by P. Wells) http://edit2011.web.cern.ch/edit2011
 - C. Haber's lectures at the TIPP 2011 conference http://conferences.fnal.gov/tipp11
- Books
 - Kleinknecht, *Detectors for Particle Radiation*, Cambridge University Press
 - Fernow, Introduction to experimental particle physics, Cambridge University Press
 - Regler, Data analysis techniques for high-energy physics experiments, Cambridge University Press

THE TRACK MODEL

Do not try to follow all formulas during the lecture...they are there just for reference

Superconducting solenoids



...but dipoles or toroids too

Cairns, 8 July 2013

Motion in a magnetic field

• The Lorentz force does not change the energy of a particle

$$\frac{d\mathbf{p}}{dt} = e\mathbf{v} \times \mathbf{B}$$

• since we measure a trajectory, we explicit the position vector **r**:

$$m\gamma \frac{d\mathbf{v}}{dt} = e\mathbf{v} \times \mathbf{B}$$
$$m\gamma \frac{d^2\mathbf{r}}{dt^2} = e\frac{d\mathbf{r}}{dt} \times \mathbf{B}$$

• and, since v is constant, can use the path length *s*=v*t*:

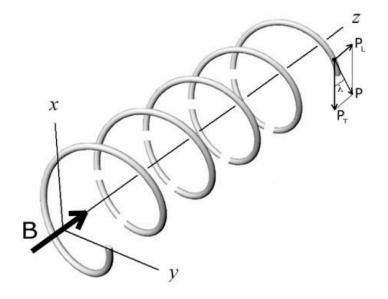
ds = vdt

$$m\gamma \mathbf{v} \frac{d^2 \mathbf{r}}{ds^2} = e \frac{d \mathbf{r}}{ds} \times \mathbf{B}$$

• finally:

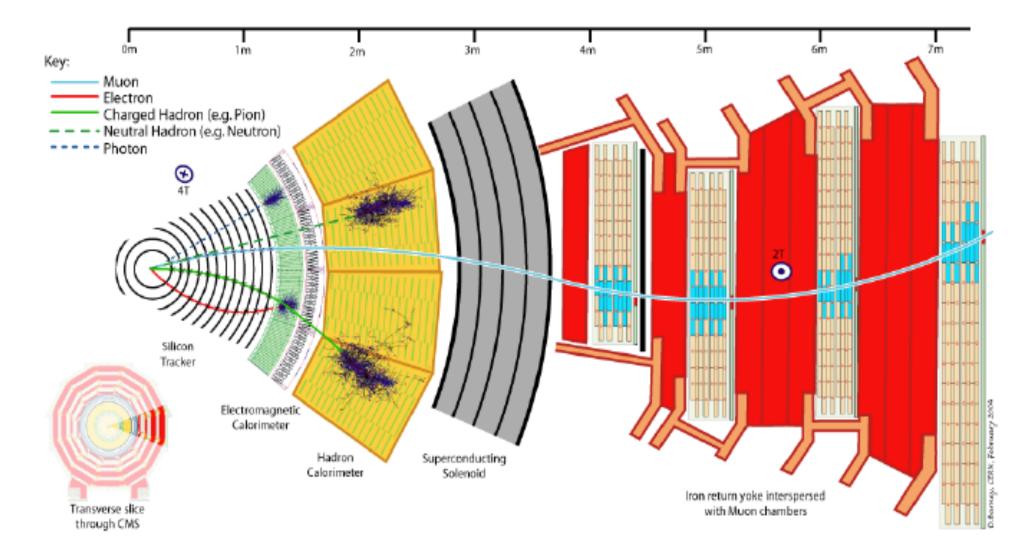
$$\frac{d^2\mathbf{r}}{ds^2} = \frac{e}{p}\frac{d\mathbf{r}}{ds} \times \mathbf{B}$$

• If the **B** field is **homogeneous** the trajectory in a **helix**:



 In the more general case of inhomogeneous magnetic field, B(s) varies along the trajectory r(s), and the differential equation needs to be solved numerically.

A CMS slice



Cairns, 8 July 2013

The helix equation

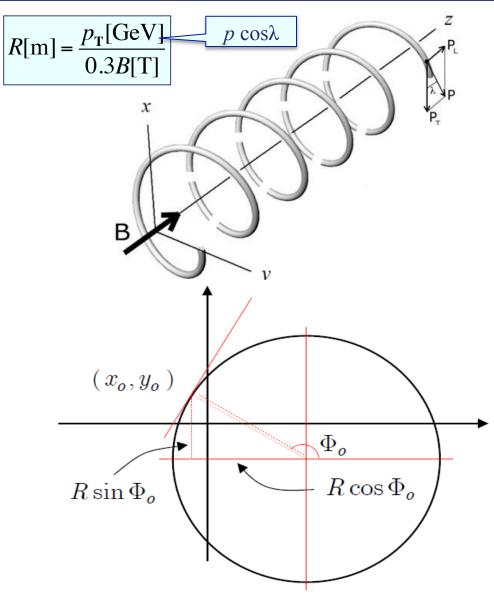
• The helix is described in parametric form:

$$x(s) = x_0 + R \left[\cos\left(\Phi_0 + \frac{hs\cos\lambda}{R}\right) - \cos\Phi_0 \right]$$
$$y(s) = y_0 + R \left[\sin\left(\Phi_0 + \frac{hs\cos\lambda}{R}\right) - \sin\Phi_0 \right]$$
$$z(s) = z_0 + s\sin\lambda$$

- λ is the **dip-angle**
- $h=\pm 1$ is the sense of rotation (sign of the charge)
- The projection on the *x*-*y* plane is a circle:

$$(x - x_0 + R\cos\Phi_0)^2 + (y - y_0 + R\sin\Phi_0)^2 = R^2$$

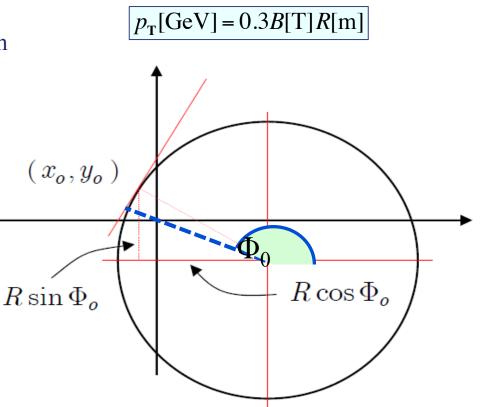
- x_0 and y_0 are the coordinates at s=0
- Φ₀ is also related to the slope of the tangent of the circle at *s*=0



Cairns, 8 July 2013

Perigee parameters

- In the helix equation:
 - The *s*=0 point is an arbitrary choice
 - A common use case is when the track is reconstructed in a region of size $\ll R$
 - $p_{\rm T}$ =1 GeV, *B*=2 T, *R*=1.7 m
 - radius of ATLAS traking system is 1.05 m
 - ... or if interested in the proximity of the interaction region
- Choose as reference point the **perigee**: the closest point to the origin of the reference frame (i.e. detector center)
- Write as a Taylor expansion in s/R
 - this is an approximation!
 - error $O(s^3/R^2)$
 - but it will be very useful for future examples



• Development in s/R:

lstituto Nazionale di Fisica Nucleare

INFN

$$\begin{aligned} x(s) &= x_0 - hs \cos \lambda \sin \Phi_0 - \frac{1}{2} \frac{s^2 \cos^2 \lambda}{R} \cos \Phi_0 \\ y(s) &= y_0 + hs \cos \lambda \cos \Phi_0 - \frac{1}{2} \frac{s^2 \cos^2 \lambda}{R} \sin \Phi_0 \\ z(s) &= z_0 + s \sin \lambda \end{aligned}$$

- we can now introduce the **perigee parameters**:
 - **impact parameter** d₀:

$$x_0 = d_0 h \cos \Phi_0, \quad y_0 = d_0 h \sin \Phi_0$$

notice it has a sign!

• the **direction of the track** at the perigee φ_0 :

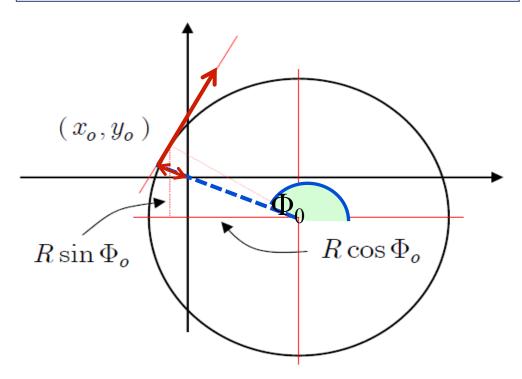
$$\cos\varphi_0 = h\sin\Phi_0, \quad \sin\varphi_0 = -h\cos\Phi_0$$

• the curvature $\kappa = \frac{h}{R}$

which includes the sign of the charge

• and the **polar angle** $\vartheta = \frac{\pi}{2} - \lambda$

$$\begin{aligned} x(s) &= -d_0 \sin \varphi_0 + s \sin \vartheta \cos \varphi_0 + \frac{1}{2} \kappa s^2 \sin^2 \vartheta \sin \varphi_0 \\ y(s) &= d_0 \cos \varphi_0 + s \sin \vartheta \sin \varphi_0 - \frac{1}{2} \kappa s^2 \sin^2 \vartheta \cos \varphi_0 \\ z(s) &= z_0 + s \cos \vartheta \end{aligned}$$



High- $p_{\rm T}$ parabolic approximation

- Starting from the parametric trajectory
 - $x(s) = -d_0 \sin \varphi_0 + s \sin \vartheta \cos \varphi_0 + \frac{1}{2} \kappa s^2 \sin^2 \vartheta \sin \varphi_0$
 - $y(s) = d_0 \cos \varphi_0 + s \sin \vartheta \sin \varphi_0 \frac{1}{2} \kappa s^2 \sin^2 \vartheta \cos \varphi_0$
 - $z(s) = z_0 + s \cos \vartheta$
- It is now interesting to define a change of coordinates $x, y \rightarrow x', y'$, with the *x'*-axis directed along the track direction:
 - $x' = x\cos\phi_0 + y\sin\phi_0$ $y' = -x\sin\phi_0 + y\cos\phi_0$ $x'(s) = s\sin\vartheta$ $y'(s) = d_0 - \frac{1}{2}\kappa s^2 \sin^2\vartheta$ $z(s) = z_0 + s\cos\vartheta$
- In these coordinates the trajectory has a simple expression in the longitudinal *ρ-z* and transverse *ρ*, *y*' planes:

$$z = z_0 + x' \tan \vartheta$$

$$y' = d_0 - \frac{1}{2} \kappa x'^2$$

- Sometimes $r=\sqrt{(x^2+y^2)}$ is used instead of x':
 - this is a "double" approximation valid for $r \gg d_0$
- If rotating to **an axis** *near* **to the particle direction** (the jet-axis for example)

$$y' = d_0 + x' \tan(\phi_0 - \phi_{jet}) - \frac{1}{2}\kappa x'^2$$

leading term in $(\varphi_0 - \varphi_{jet})$ This equation will be our *workhorse*

Cairns, 8 July 2013

Impact parameter resolution

- In proximity of the production vertex, one can ignore the $\kappa x'^2$ term and consider the trajectory a straight line.
- Let's take two detector planes:

I N F N

stituto Nazionale di Fisica Nucleare

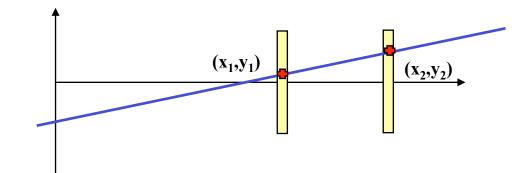
- at positions $\mathbf{x_1}$ and $\mathbf{x_2}$,
- resolution σ_y on the y-coordinate measurement.
- The reconstructed trajectory is:

$$y = \frac{y_2 - y_1}{x_2 - x_1} x + \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1}$$

• The uncertainty on the impact parameter is:

$$\sigma_{d} = \frac{\sqrt{x_{2}^{2} + x_{1}^{2}}}{x_{2} - x_{1}} \sigma_{y}$$
$$= \sqrt{\frac{n^{2} + 1}{(n - 1)^{2}}} \sigma_{y}$$

• where we introduced the lever arm: $n=x_2/x_1$



• The **geometrical factor** in front of σ_y is always greater than 1:

detector resolution must be better than our targeted impact parameter resolution.

- $\mathbf{x_1}$ should be as small as possible. It is usually limited by:
 - beam pipe size
 - radiation damage
 - particle density and background
- **x**₂ is limited by costs (either financial or operational)

Cairns, 8 July 2013

- Multiple scattering play a key role in the impact parameter resolution.
- Each material layer crossed by the particle before reaching the detector, deflects the particle by a random angle with r.m.s.:

$$\theta_{0} = \frac{13.6 \text{ MeV}}{\beta cp} z \sqrt{\frac{l}{X_{0}}} \left(1 + 0.038 \ln \frac{l}{X_{0}} \right)$$

where *l* is the thickness of the crossed material.

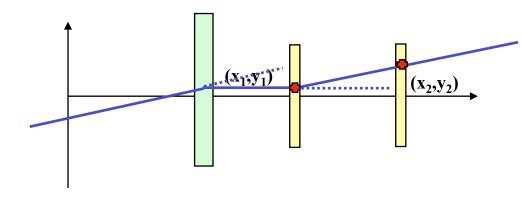
• This deflection translate in an error on the impact parameter of

$$\delta d = R \cdot \theta_0$$

where \boldsymbol{R} is the distance of the material layer from the interaction point.

• Summing in quadrature all contributions:

$$\sigma_d = \sqrt{\sum_i R_i^2 \theta_{0,i}^2}$$



- The sum is computed over all material layers till the first measured point (included).
- The formula for θ_0 is valid in a plane perpendicular to the trajectory. If the track is tilted by an angle ϑ with respect to the *x*-*y* plane, the projected angle is magnified by a factor $1/\sin\vartheta$.
- Also the crossed thickness *l* increases in the same way, providing an additional 1/sin^{1/2} the factor.

Cairns, 8 July 2013

' N F N

lstituto Nazionale di Fisica Nucleare

Momentum: intrinsic resolution

- Momentum is measured from the bending of the trajectory.
- In collider experiments detectors are put inside the magnetic field.
- Measuring the **sagitta** *s* over a length *L*:

$$s = R\left(1 - \cos\frac{\theta}{2}\right) \approx R\frac{\theta^2}{8}$$
$$= \frac{qBL^2}{8p}$$

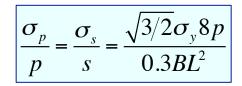
• numerically:

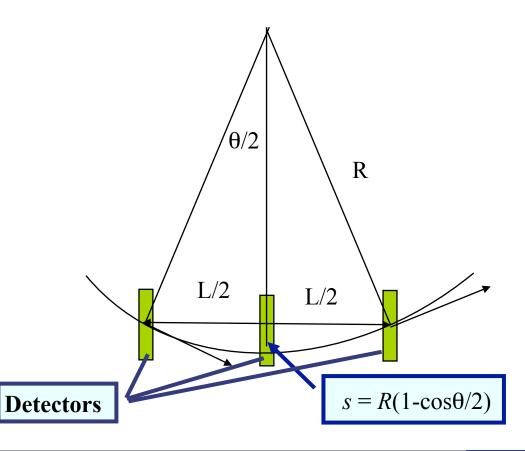
$$s[m] = \frac{0.3B[T]L^2[m]}{8p[GeV/c]}$$

• If measurement by only three detectors:

$$s = y_2 - \frac{1}{2}(y_1 + y_3)$$
$$\sigma_s = \sqrt{3/2}\sigma_y$$

• Momentum resolution is





Momentum: multiple scattering

• For multiple scattering deflections in the detector material:

$$\delta y_2 = \frac{L}{2} \delta \theta_1 \quad \delta y_3 = L \delta \theta_1 + \frac{L}{2} \delta \theta_2 \quad \Rightarrow \quad \delta s = \delta y_2 - \frac{1}{2} \delta y_3 = -\frac{L}{2} \delta \theta_2 \qquad \qquad \sigma_s = \frac{L}{2} \theta_{ms,2}$$

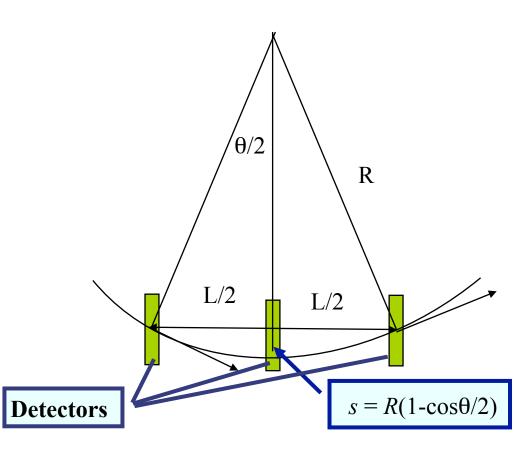
- This is a multiple scatterring contribution to the curvature measurement.
- Adding the two terms, we get:

$$\sigma_{s} = \sigma_{\text{tracking}} \oplus \frac{\sigma_{\text{MS}}}{p}$$

• The relative momentum resolution becomes:

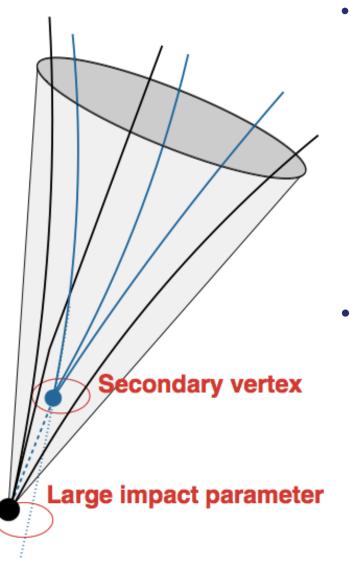
$$\frac{\sigma_p}{p} = \frac{\sigma_s}{s} = \frac{8}{0.3BL^2} \left(p \sigma_{\text{tracking}} \oplus \sigma_{\text{MS}} \right)$$

- resolution improves linearly with *B* and with the detector point resolution
- the improvement is quadratic in L
- relative momentum resolution:
 - is constant at low momentum (MS)
 - worsens with increasing momentum



Cairns, 8 July 2013

Performance requirements



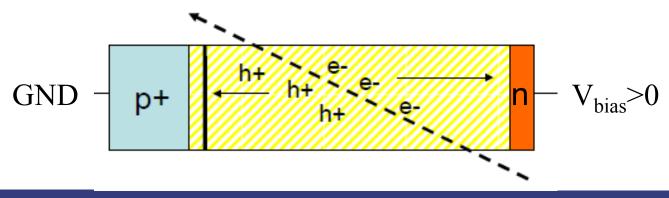
- Very interesting in current experiments are the heavy flavours (c, b, τ) .
 - lifetime of $O(10^{-12} s)$
 - impact parameters of order of c(t)~300 μm
 - need a detector with resolution one order of magnitude better to detect them with high efficiency and purity.

- In ATLAS (B=2 T, L=1 m) a 200 GeV particle has a sagitta of about 400 μm.
 - to be able to reconstruct accurately new high energy resonances the sagitta should be reconstructed with few tens of µm precision.

THE DETECTORS

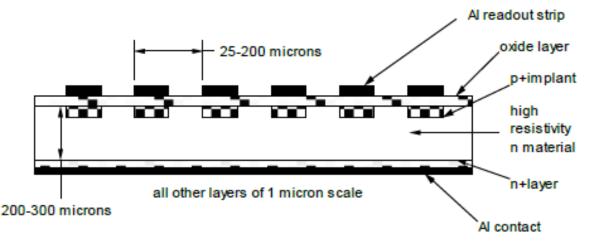
Semiconductor detectors

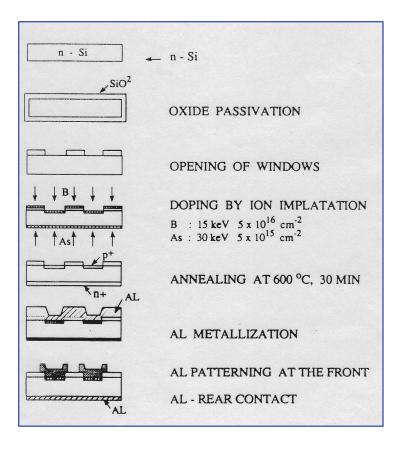
- Semiconductor detectors consists of inversely polarized p-n junctions.
- Depleted region with only static charge density $N_D N_A$
 - thickness $W = \sqrt{\mu \rho \varepsilon (V_{\text{bias}} + V_{\text{BI}})}$
 - μ = carrier mobility 1350 cm²V⁻¹s⁻¹ for e, 450 cm²V⁻¹s⁻¹ for h
 - ρ = resisitivity (detector grade Si is 1-10 kΩ/cm)
 - ε = dielectric constant, 11.9 ε_0 V_{BI} = *built-in* voltage ~0.5 V
- When a charged particle crosses the detector:
 - collisions excite electrons to the conduction band, creating electron-hole pairs (~3.6 eV/pair, ~80 pairs/µm)
 - the mobile carriers are separated by the junction electric field, generating a current signal of few ns length.



Position sensitive detectors

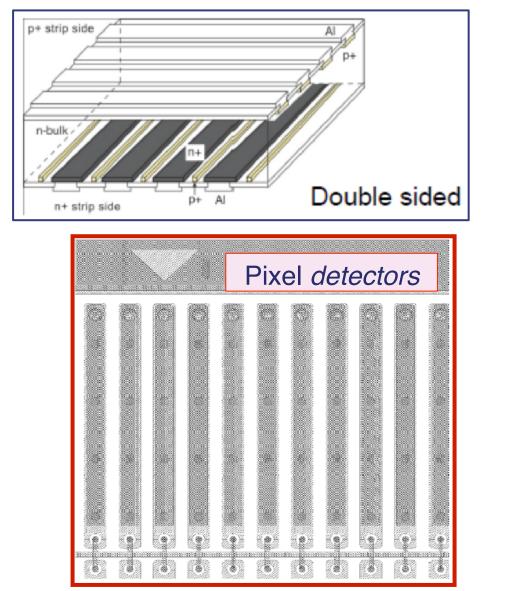
- The first high resolution detectors were silicon microstrip.
- Use of microlithography from semiconductor electronics industry.
- Fine segmentation of collecting electrodes: µm level resolution
- Thickness of few hundreds µm: signal of 10⁴ e-h, detectable with low noise electronics

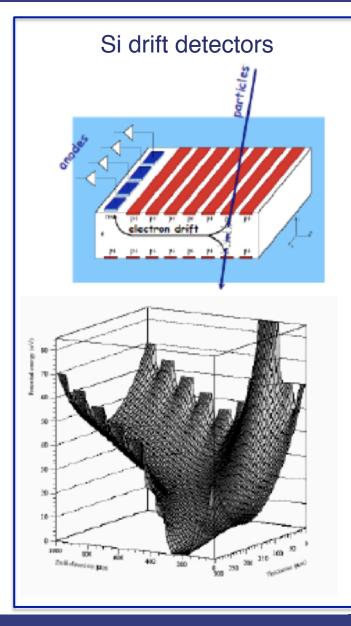




Cairns, 8 July 2013

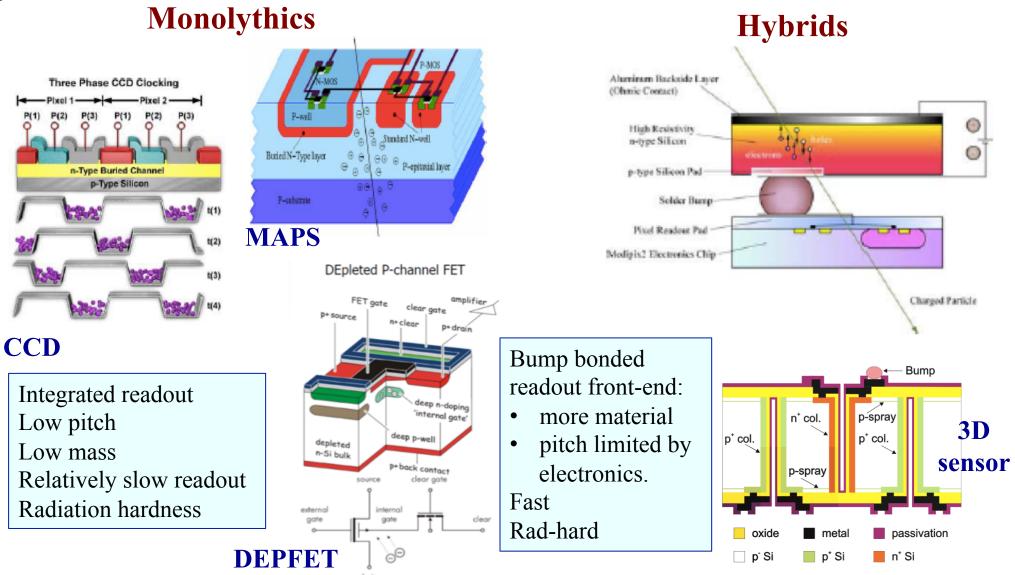
Various types of Si detectors





Cairns, 8 July 2013

Pixel tecnologies



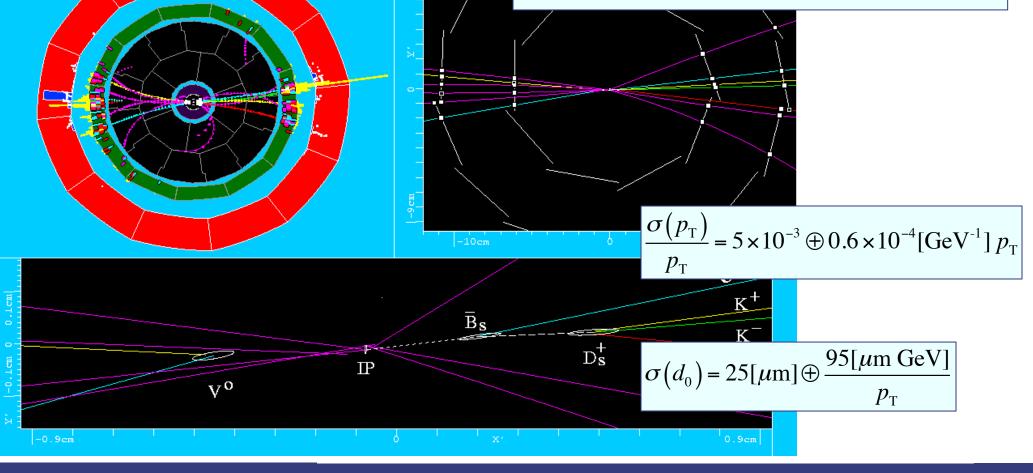
Cairns, 8 July 2013

EXAMPLES OF SYSTEMS

ALEPH DALI

ALEPH @ LEP

- 2 planes Si microstrips 25 µm pitch
- Inner jet chamber
- Large volume Time Projection Chamber
- B = 1.5 T



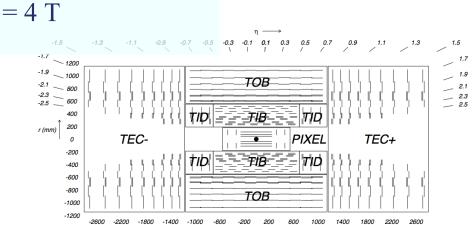
Cairns, 8 July 2013

ATLAS and CMS at LHC

- ATLAS
- 3 pixel layers
 - $-~50~\mu m \times 400~\mu m$
 - 1.4 m² of silicon
 - 80 million pixels
- 4 strip double-layers
 - 80 μm pitch
 - 400 mrad stereo angle
- Straw tube tracker
 - ~30 points
- B = 2 T

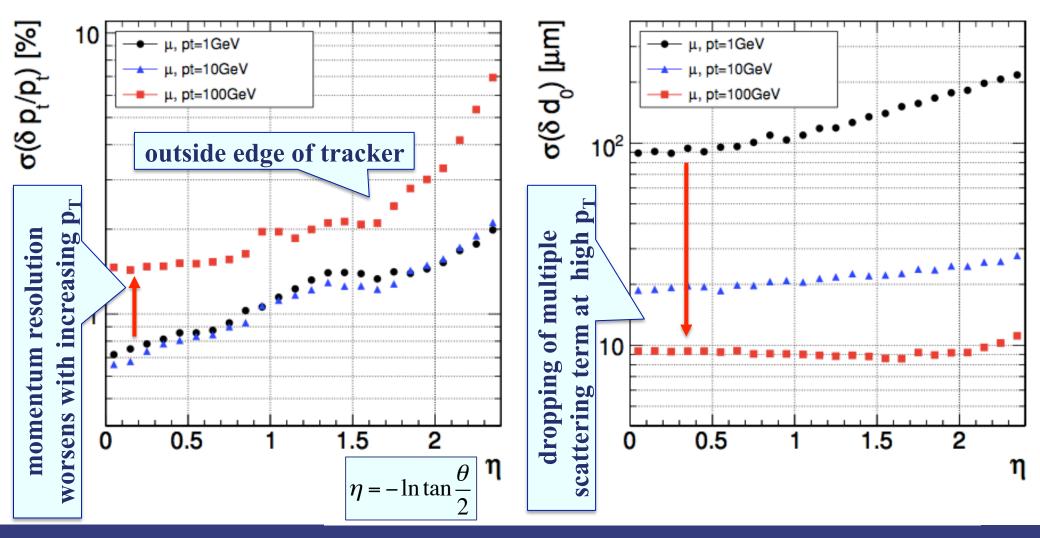
CMS

- 3 pixel layers
 - 100 μm × 150 μm
- 10 strip layers
 - 80–183 μm pitch
 - 200 m² of silicon
 - >9 million strips
- B = 4 T



Resolution

The CMS experiment at the CERN LHC, JIST 3 (2008) S08004



Cairns, 8 July 2013

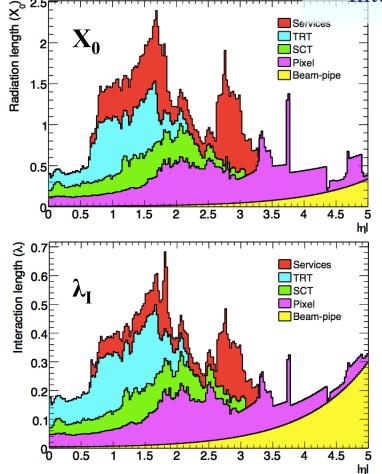
INFN

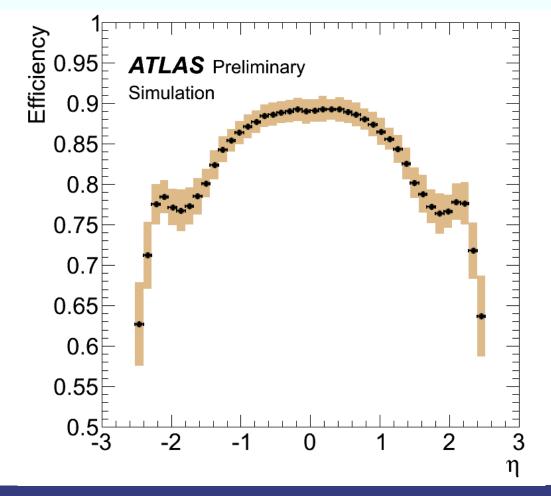
Istituto Nazionale di Fisica Nucleare

Material and efficiency

Material contributes not only to resolution, but also to efficiency:

• Si is almost 100% efficient

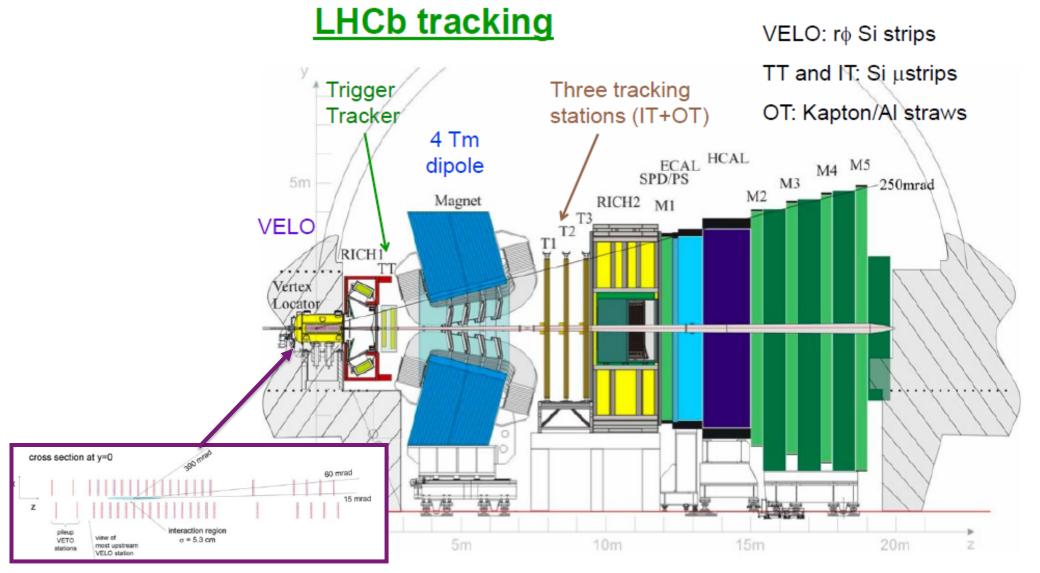




Cairns, 8 July 2013

LHCb

2008 JINST 3 S08005 LHCb Detector



Cairns, 8 July 2013

TRACK FITTING

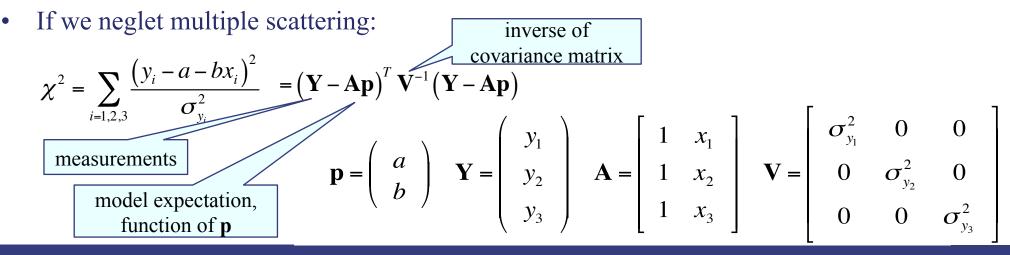
Track fitting: straight track model

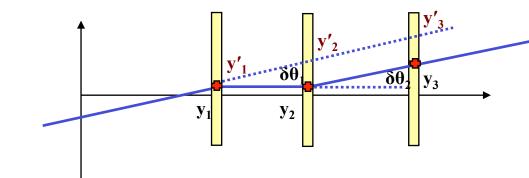
- In our previous examples we used only the minimal number of points.
- Usually more measurements then the minimum:
 - redundancy

INFN

di Fisica Nucleare

- pattern recognition
- improved precision
- Simple straight line model: y = a + bx expected crossing points: $y'_i = a + bx_i$
- Best parameters are defined by minimizing the χ^2 of the residuals between the measurements y_i and the expectations y'_i from a set of parameters (a,b).



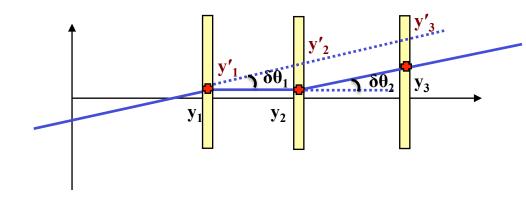


Cairns, 8 July 2013

Track fitting: multiple scattering

• In reality $y_i - y'_i$ contains contributions from multiple scattering:

 $\begin{aligned} \varepsilon &= \text{measurement error} \\ y_1 &= a + bx_1 + \varepsilon_1 \\ y_2 &= a + bx_2 + \varepsilon_2 + (x_2 - x_1)\delta\theta_1 \\ y_3 &= a + bx_3 + \varepsilon_3 + (x_3 - x_1)\delta\theta_1 + (x_3 - x_2)\delta\theta_2 \end{aligned}$



- The definition of the covariance matrix is: $V_{ij} = \langle (y_i y'_i)(y_j y'_j) \rangle$
- Uncertainties are $\langle \varepsilon_i^2 \rangle = \sigma_{y_i}^2$, $\langle \delta \theta_i^2 \rangle = \theta_{\text{ms},i}^2$
- Error sources are not correlated: $\langle \varepsilon_i \varepsilon_j \rangle = 0, i \neq j; \quad \langle \delta \theta_i \delta \theta_j \rangle = 0, i \neq j; \quad \langle \varepsilon_i \delta \theta_j \rangle = 0$
- Diagonal elements:

$$V_{11} = \langle \varepsilon_{1}^{2} \rangle = \sigma_{y_{1}}^{2}$$

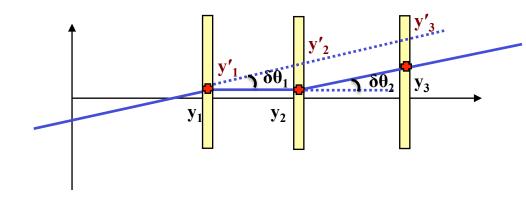
$$V_{22} = \langle (\varepsilon_{2} + (x_{2} - x_{1})\delta\theta_{1})^{2} \rangle = \langle \varepsilon_{2}^{2} \rangle + 2\langle \varepsilon_{2} (x_{2} - x_{1})\delta\theta_{1} \rangle + \langle (x_{2} - x_{1})^{2} \delta\theta_{1}^{2} \rangle = \sigma_{y_{2}}^{2} + (x_{2} - x_{1})^{2} \theta_{ms,1}^{2}$$

$$V_{33} = \sigma_{y_{3}}^{2} + (x_{3} - x_{1})^{2} \theta_{ms,1}^{2} + (x_{3} - x_{2})^{2} \theta_{ms,2}^{2}$$

Track fitting: multiple scattering

• In reality $y_i - y'_i$ contains contributions from multiple scattering:

 $\begin{aligned} \varepsilon &= \text{measurement error} \\ y_1 &= a + bx_1 + \varepsilon_1 \\ y_2 &= a + bx_2 + \varepsilon_2 + (x_2 - x_1)\delta\theta_1 \\ y_3 &= a + bx_3 + \varepsilon_3 + (x_3 - x_1)\delta\theta_1 + (x_3 - x_2)\delta\theta_2 \end{aligned}$



- The definition of the covariance matrix is: $V_{ij} = \langle (y_i y'_i)(y_j y'_j) \rangle$
- Uncertainties are $\langle \varepsilon_i^2 \rangle = \sigma_i^2$, $\langle \delta \theta_i^2 \rangle = \theta_{\text{ms},i}^2$
- Error sources are not correlated: $\langle \varepsilon_i \varepsilon_j \rangle = 0, i \neq j; \quad \langle \delta \theta_i \delta \theta_j \rangle = 0, i \neq j; \quad \langle \varepsilon_i \delta \theta_j \rangle = 0$
- Non-diagonal elements:

$$V_{12} = V_{13} = 0$$

$$V_{23} = \left\langle \left(\varepsilon_2 + (x_2 - x_1)\delta\theta_1\right) \left(\varepsilon_3 + (x_3 - x_1)\delta\theta_1 + (x_3 - x_2)\delta\theta_2\right) \right\rangle = \left\langle (x_2 - x_1) (x_3 - x_1)\delta\theta_1^2 \right\rangle$$

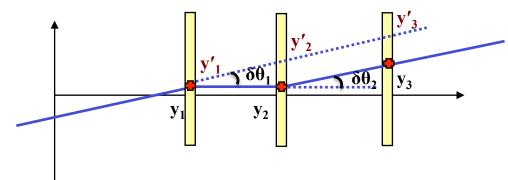
$$= (x_2 - x_1) (x_3 - x_1)\theta_{ms,1}^2$$

Track fitting: multiple scattering

• Finally, the covariance V to be used in the χ^2 minimization is:è

$$\mathbf{V} = \begin{bmatrix} \sigma_{y_1}^2 & 0 & 0 \\ 0 & \sigma_{y_2}^2 & 0 \\ 0 & 0 & \sigma_{y_3}^2 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & (x_2 - x_1)^2 \theta_{\text{ms},1}^2 & (x_3 - x_1)(x_2 - x_1) \theta_{\text{ms},1}^2 \\ 0 & (x_3 - x_1)(x_2 - x_1) \theta_{\text{ms},1}^2 & (x_3 - x_1)^2 \theta_{\text{ms},1}^2 + (x_3 - x_2)^2 \theta_{\text{ms},2}^2 \end{bmatrix}$$

- The second matrix has:
 - diagonal elements due to any previous material affecting the trajectory at a given plane.
 - off-diagonal elements: present if a previous material layer affect the trajectory in more than one plane.
- In our case:
 - scattering on plane 1
 - affects the position in both plane 2 and plane 3



Global χ²

The technique described till now consists in the minimization of a χ^2 involving all measurement points:

$$\chi^{2} = (\mathbf{Y} - \mathbf{A}\mathbf{p})^{T} \mathbf{V}^{-1} (\mathbf{Y} - \mathbf{A}\mathbf{p})$$

and therefore is indicated as a global χ^2 :

- requires the inversion of a NxN covariance matrix (N=number of measurements)
- has become popular with silicon tracking systems because tracks have few, precise measurements
- Our model assumes the whole track is a straight line:
 - *b* is sort *average* track direction
 - but we are interested in track direction at the production point
 - Multiple scattering is taken into account by giving lower weights to points far away from the interaction region

How can it be improved?

<u>Global</u> χ^2

Insert scattering angles as part of the track model

$$y(x) = \begin{cases} a + bx & bis track direction at interaction point \\ a + bx + \delta\theta_1(x - x_1) & x_1 < x < x_2 \\ a + bx + \delta\theta_1(x - x_1) + \delta\theta_2(x - x_2) & x_2 < x < x_3 \end{cases}$$

track direction changes along x

- Additional parameters, with expectation value 0 and r.m.s. θ_{ms}

The same $\chi^2 = (\mathbf{Y} - \mathbf{A}\mathbf{p})^T \mathbf{V}^{-1} (\mathbf{Y} - \mathbf{A}\mathbf{p})$ holds, but with the modified matrices:

$$\mathbf{p} = \begin{pmatrix} a \\ b \\ \delta \theta_1 \\ \delta \theta_1 \\ \delta \theta_1 \end{pmatrix} \mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 0 \end{pmatrix} \mathbf{A} = \begin{bmatrix} 1 & x_1 & 0 & 0 \\ 1 & x_2 & x_2 - x_1 & 0 \\ 1 & x_3 & x_3 - x_1 & x_3 - x_2 \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{V} = \begin{bmatrix} \sigma_{y_1}^2 & 0 & 0 & 0 & 0 \\ 0 & \sigma_{y_2}^2 & 0 & 0 & 0 \\ 0 & 0 & \sigma_{y_3}^2 & 0 & 0 \\ 0 & 0 & \sigma_{y_3}^2 & 0 & 0 \end{bmatrix}$$

$$\begin{pmatrix} \delta \theta_2 \end{pmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & \theta_{ms,1}^2 & 0 \\ 0 & 0 & 0 & 0 & \theta_{ms,2}^2 \end{bmatrix}$$

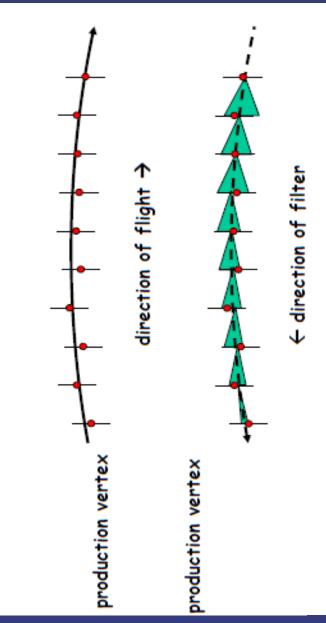
The number of degrees of freedom does not change

Estimate multiple scattering instead of putting it into the weights ____

Kalman filter

- Step-by-step updating procedure:
 - use initial estimation of track parameters
 - extrapolate to next measured point
 - compare extrapolation with measurement
 - derive updated track parameters
- Continue adding all points one at the time.

- For each point invert a matrix of size equal to the track parameters
 - computation time is Nd³ instead of N³
- Comparison allows for rejection of outliers
 - can also be used during pattern recognition

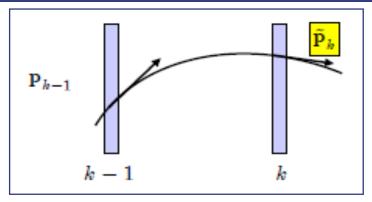


Kalman filter

- Only providing basic idea of Kalman filtering
 - one iteration of the fit, from detector plane k-1 to k
 - see bibliography for more details
- At plane *k*-1 we have an estimation of the track parameters \mathbf{p}_{k-1} , with their covariance matrix \mathbf{C}_{k-1} .
- Extrapolate to plane k:

$$\tilde{\mathbf{p}}_{k} = \mathbf{f}(\mathbf{p}_{k-1}) \qquad \mathbf{F} = \frac{\partial \mathbf{f}}{\partial \mathbf{p}}(\mathbf{p}_{k-1})$$
$$\tilde{\mathbf{C}}_{k} = \mathbf{F}\mathbf{C}_{k}\mathbf{F}^{\mathrm{T}} + \mathbf{M}_{ms}$$

- \mathbf{M}_{ms} includes the multiple scattering uncertainty in the extrapolation.
- On surface k we have some measurements m_k with covariance V_k.



- The updated parameters \mathbf{p}_k are obtained my minimizing a χ^2 including:
 - comparison of \mathbf{m}_k with expectations $\mathbf{y}_k(\mathbf{p}_k)$ from the track model
 - the extrapolated parameters

 $\chi^{2} = \left(\mathbf{m}_{k} - \mathbf{y}_{k}(\mathbf{p}_{k})\right)^{\mathrm{T}} \mathbf{V}_{k}^{-1} \left(\mathbf{m}_{k} - \mathbf{y}_{k}(\mathbf{p}_{k})\right)$

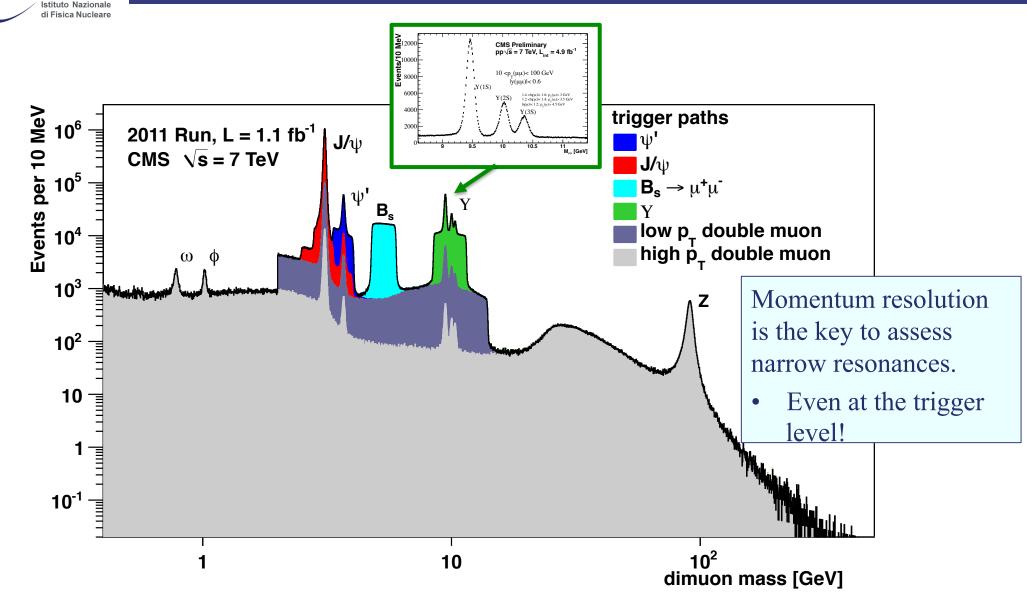
$$+ \left(\tilde{\mathbf{p}}_{k} - \mathbf{p}_{k} \right)^{\mathrm{T}} \tilde{\mathbf{C}}_{k}^{-1} \left(\tilde{\mathbf{p}}_{k} - \mathbf{p}_{k} \right)$$

- Try to develop the concrete expressions for a linear track fit:
 - solutions in the back-up slides

Cairns, 8 July 2013

APPLICATIONS

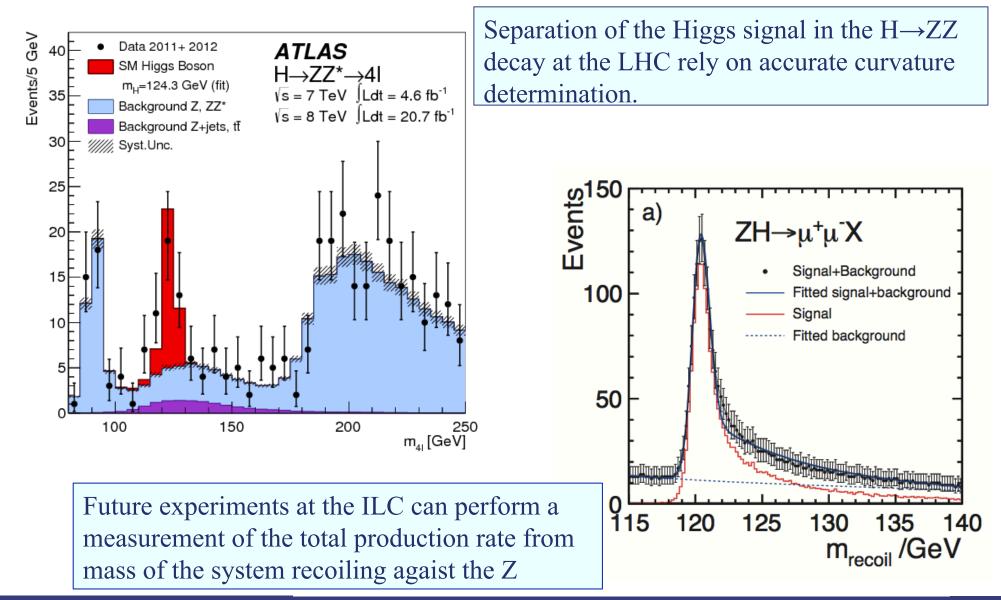
Invariant mass reconstruction



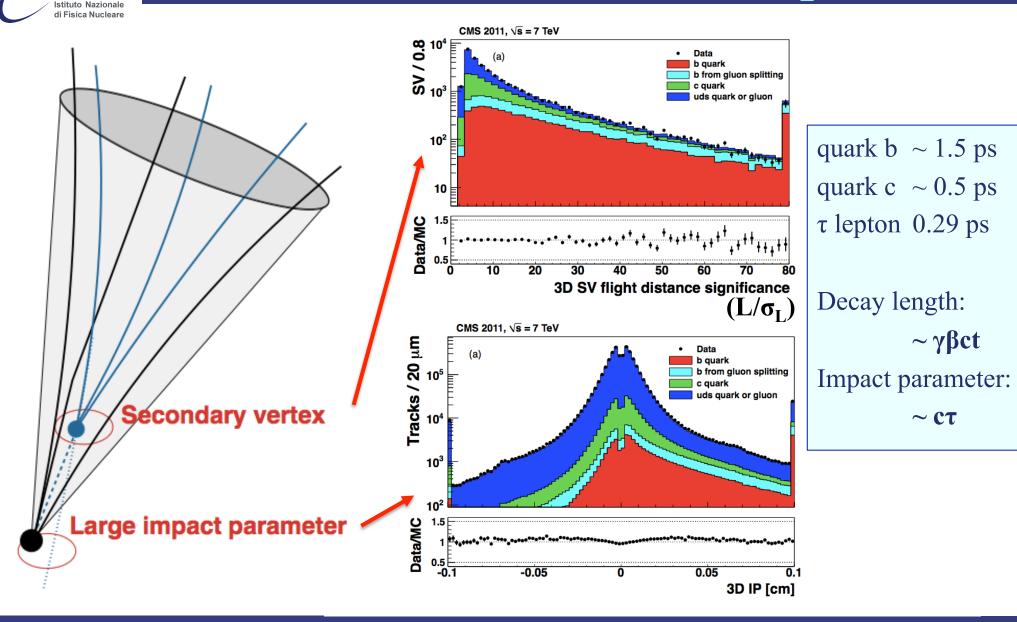
Cairns, 8 July 2013

INFN

Higgs and momentum resolution



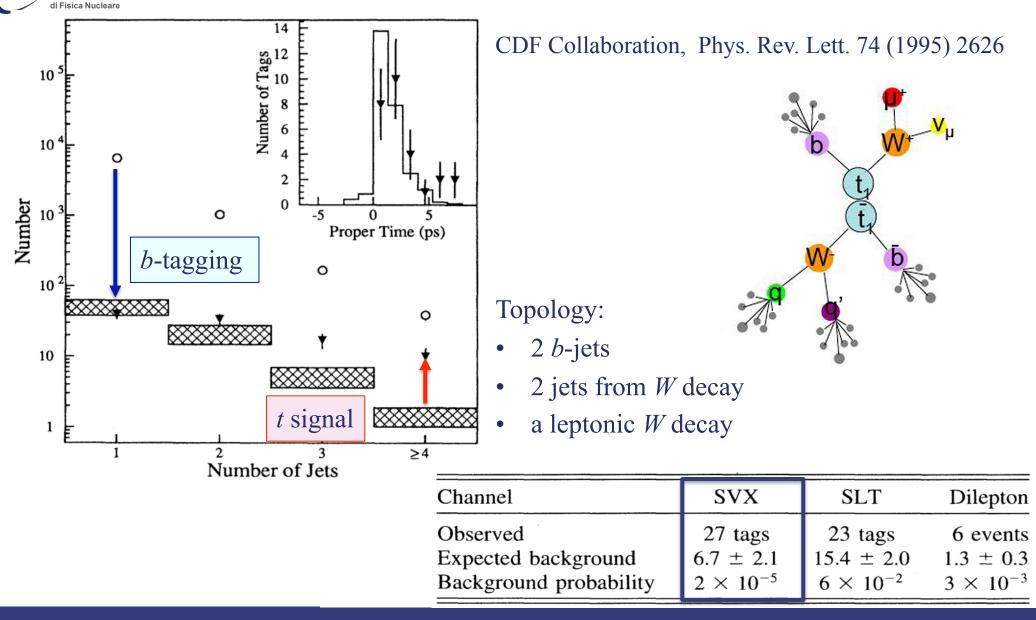
Cairns, 8 July 2013



Cairns, 8 July 2013

INFN

Top quark discovery

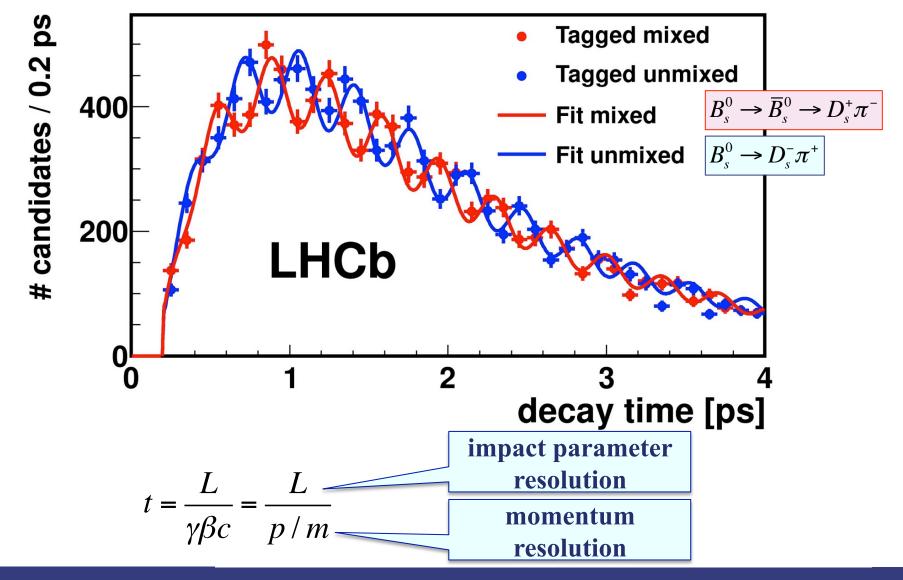


Cairns, 8 July 2013

INFN

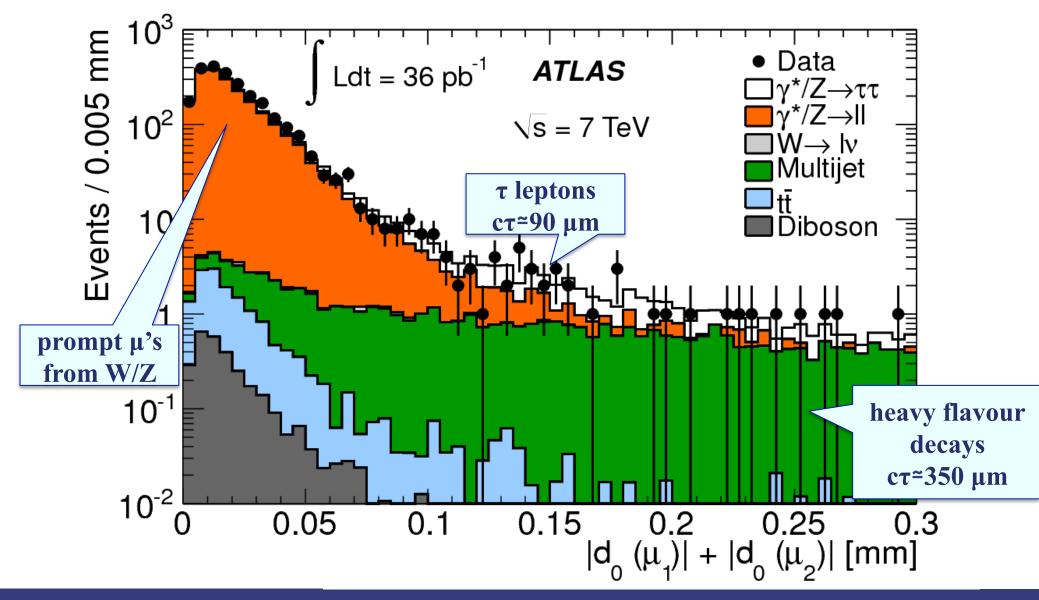
Istituto Nazionale

B⁰_s oscillations



Cairns, 8 July 2013

$Z \rightarrow \tau \tau \rightarrow \mu \mu + 4\nu$



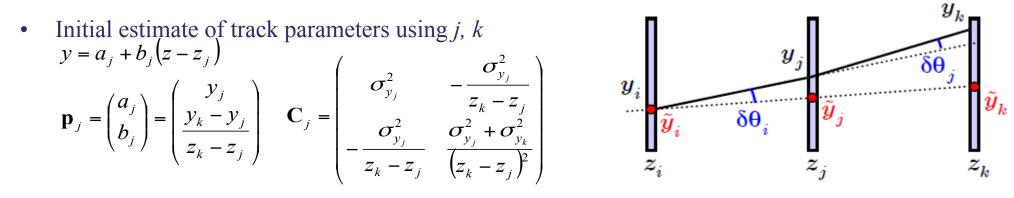
Conclusions

- I hope to have provided you with a quick overview of the very basics of charged particle tracking:
 - how it works
 - why it is useful
 - ...and why Si detectors are great at that!
- Many topics not addressed here:
 - detector technologies just shortly listed
 - front-end electronics and position reconstruction (beyond just electrode segmentation)
 - no mention of radiation damage
 - pattern recognition and vertex reconstruction
 - future intelligent trigger systems

All of these are very active and challenging research areas

Example KALMAN FILTER FOR "STRAIGHT" TRACKS

Kalman filter: example



• Extrapolate to point *i*: $y = a_j + b_j(z - z_j) \Rightarrow y = a_i + b_i(z - z_i)$

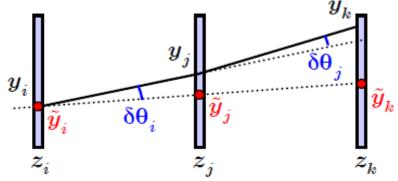
$$\widetilde{\mathbf{p}}_{i} = \begin{pmatrix} \widetilde{a}_{i} \\ \widetilde{b}_{i} \end{pmatrix} = \begin{pmatrix} a_{j} - b_{j}(z_{j} - z_{i}) \\ b_{j} \end{pmatrix}$$

$$\widetilde{\mathbf{C}}_{j} = \frac{1}{(z_{k} - z_{j})^{2}} \begin{pmatrix} (z_{k} - z_{i})^{2} \sigma_{y_{j}}^{2} + (z_{j} - z_{i})^{2} \sigma_{y_{k}}^{2} & -(z_{k} - z_{i}) \sigma_{y_{j}}^{2} - (z_{j} - z_{i}) \sigma_{y_{k}}^{2} \\ -(z_{k} - z_{i}) \sigma_{y_{j}}^{2} - (z_{j} - z_{i}) \sigma_{y_{k}}^{2} & \sigma_{y_{j}}^{2} + \sigma_{y_{k}}^{2} \end{pmatrix} + \theta_{p,j}^{2} \begin{pmatrix} (z_{j} - z_{i})^{2} & z_{j} - z_{i} \\ z_{j} - z_{i} & 1 \end{pmatrix}$$
which gives contribution to the χ^{2} for the parameters at *i*:
$$\mathbf{p}_{i} = \begin{pmatrix} a_{i} \\ b_{i} \end{pmatrix}$$

$$\chi^{2} = \left(\widetilde{\mathbf{p}}_{i} - \mathbf{p}_{i}\right)^{T} \widetilde{\mathbf{C}}^{-1} \left(\widetilde{\mathbf{p}}_{i} - \mathbf{p}_{i}\right)$$

Kalman filter: example

• The measurement at *i* gives the term: $y = a_i + b_i(z - z_i)$ $\mathbf{H}_i = \begin{pmatrix} 1 & 0 \end{pmatrix} \quad \mathbf{H}_i \mathbf{p}_j - y_i = a_i - y_i$ $\chi^2 = \frac{(y_i - a_i)^2}{\sigma_{y_i}^2}$



• And the new parameters are obtained by the minimization of:

$$\chi^{2} = (\widetilde{\mathbf{p}}_{i} - \mathbf{p}_{i})^{T} \widetilde{\mathbf{C}}^{-1} (\widetilde{\mathbf{p}}_{i} - \mathbf{p}_{i}) + \frac{(y_{i} - a_{i})^{2}}{\sigma_{y_{i}}^{2}}$$

• Which can be put in the general χ^2 form: $\chi^2 = (\mathbf{Y} - \mathbf{A}\mathbf{p})^T \mathbf{V}^{-1} (\mathbf{Y} - \mathbf{A}\mathbf{p})$

$$\mathbf{p} = \begin{pmatrix} a_i \\ b_i \end{pmatrix} \quad \mathbf{Y} = \begin{pmatrix} \widetilde{a}_i \\ \widetilde{b}_i \\ y_i \end{pmatrix} \quad \mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \mathbf{V} = \begin{bmatrix} \widetilde{\mathbf{C}}_i & \mathbf{0} \\ \mathbf{0} & \sigma_{y_i}^2 \end{bmatrix}$$

whose solution is:

$$\mathbf{p} = \left(\mathbf{A}^T \mathbf{W} \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{W} \mathbf{Y} \quad \mathbf{C}_i = \left(\mathbf{A}^T \mathbf{W} \mathbf{A}\right)^{-1} \quad \mathbf{W} = \mathbf{V}^{-1} = \begin{bmatrix} \tilde{\mathbf{C}}_i^{-1} & \mathbf{0} \\ \mathbf{0} & 1/\sigma_{y_i}^2 \end{bmatrix}$$

Kalman filter: example

• And finally, going to the interaction point:

$$y = a_0 + b_0 z$$

$$\mathbf{p}_0 = \begin{pmatrix} a_0 \\ b_0 \end{pmatrix} = \begin{pmatrix} a_i - b_i z_i \\ b_i \end{pmatrix}$$

$$\mathbf{C}_0 = \begin{pmatrix} 1 & -z_i \\ 0 & 1 \end{pmatrix} \mathbf{C}_i \begin{pmatrix} 1 & 0 \\ -z_i & 1 \end{pmatrix} + \theta_{p,i}^2 \begin{pmatrix} z_i^2 & -z_i \\ -z_i & 1 \end{pmatrix}$$

