Tracking with silicon detector

Attilio Andreazza
Università di Milano and INFN

CoEPP Tropical Workshop 2013

Outline

1. What is a silicon tracking system
2. Track parameters and resolutions
3. Silicon detectors
4. Tracking systems
5. Understanding track fitting (optional)
6. Performance and applications

WHAT IS A (SILICON) TRACKING SYSTEM?

Reconstruction of charged particles produced in particle physics experiments: with high granularity with high precision: position down to $\mathrm{O}(10 \mu \mathrm{~m})$ momentum down to 10^{-3}
Unique way to access the region of the interaction vertex (pileup, short lived particles)

A particle physics detector

Momentum measurement, Production and decay vertex reconstruction, hadron identification. Light material ($\sim 1 \mathbf{X}_{\mathbf{0}}$)

Evolution of tracking systems

1) $B_{1}^{0} \rightarrow D_{1}^{*-} \mu_{1}^{+} v_{1}, D_{1}^{*-} \rightarrow \pi_{1}^{-} \bar{D}, \bar{D} \xrightarrow{0} K_{1}^{+} \pi_{1}^{-}$
2) $B_{2}^{0} \rightarrow D_{2}^{*}-\mu_{2}^{+} \nu_{2}, D_{2}^{*-} \rightarrow \pi^{0} D^{-}, D^{-} \rightarrow K_{2}^{+} \pi_{2}^{-} \pi_{2}^{-}$
...through the addition of few very precise Si-based measurements near to the interaction region...

From continuous tracking with gas detector...

Evolution of tracking systems

di Fisica Nucleare

CMS

CMS Experiment at LHC CERN Data recorded: Sun Jul 4 01:33:41 2010 EDT mi section: 20
umi section: 20
$\mathrm{B}_{\mathrm{s}} \rightarrow J / \psi \phi \quad$ candidate eve

- A lot of the contents of today slides is taken from:
- F. Ragusa, New Journal of Physics 9 (2007) 336
- The lectures given at the CERN EDIT 2011 School (especially by P. Wells) http://edit2011.web.cern.ch/edit2011
- C. Haber's lectures at the TIPP 2011 conference http://conferences.fnal.gov/tipp11
- Books
- Kleinknecht, Detectors for Particle Radiation, Cambridge University Press
- Fernow, Introduction to experimental particle physics, Cambridge University Press
- Regler, Data analysis techniques for high-energy physics experiments, Cambridge University Press

THE TRACK MODEL

Do not try to follow all formulas during the lecture...they are there just for reference

Superconducting solenoids

di Fisica Nucleare

- The Lorentz force does not change the energy of a particle

$$
\frac{d \mathbf{p}}{d t}=e \mathbf{v} \times \mathbf{B}
$$

- since we measure a trajectory, we explicit the position vector \mathbf{r} :

$$
\begin{aligned}
& m \gamma \frac{d \mathbf{v}}{d t}=e \mathbf{v} \times \mathbf{B} \\
& m \gamma \frac{d^{2} \mathbf{r}}{d t^{2}}=e \frac{d \mathbf{r}}{d t} \times \mathbf{B}
\end{aligned}
$$

- and, since v is constant, can use the path length $s=\mathrm{v} t$:

$$
\begin{gathered}
d s=\mathrm{v} d t \\
m \gamma \mathrm{v} \frac{d^{2} \mathbf{r}}{d s^{2}}=e \frac{d \mathbf{r}}{d s} \times \mathbf{B}
\end{gathered}
$$

- finally:

$$
\frac{d^{2} \mathbf{r}}{d s^{2}}=\frac{e}{p} \frac{d \mathbf{r}}{d s} \times \mathbf{B}
$$

- If the \mathbf{B} field is homogeneous the trajectory in a helix:

- In the more general case of inhomogeneous magnetic field, $\mathbf{B}(\mathrm{s})$ varies along the trajectory $\mathbf{r}(\mathrm{s})$, and the differential equation needs to be solved numerically.

A CMS slice

The helix equation

- The helix is described in parametric form:

$$
\begin{aligned}
& x(s)=x_{0}+R\left[\cos \left(\Phi_{0}+\frac{h s \cos \lambda}{R}\right)-\cos \Phi_{0}\right] \\
& y(s)=y_{0}+R\left[\sin \left(\Phi_{0}+\frac{h s \cos \lambda}{R}\right)-\sin \Phi_{0}\right] \\
& z(s)=z_{0}+s \sin \lambda
\end{aligned}
$$

- λ is the dip-angle
- $h= \pm 1$ is the sense of rotation (sign of the charge)
- The projection on the $x-y$ plane is a circle:

$$
\left(x-x_{0}+R \cos \Phi_{0}\right)^{2}+\left(y-y_{0}+R \sin \Phi_{0}\right)^{2}=R^{2}
$$

- x_{0} and y_{0} are the coordinates at $s=0$
- Φ_{0} is also related to the slope of the tangent of the circle at $s=0$

Perigee parameters

In the helix equation:

- The $s=0$ point is an arbitrary choice
- A common use case is when the track is reconstructed in a region of size $\ll \boldsymbol{R}$
- $p_{\mathrm{T}}=1 \mathrm{GeV}, B=2 \mathrm{~T}, R=1.7 \mathrm{~m}$
- radius of ATLAS traking system is 1.05 m

$$
p_{\mathrm{T}}[\mathrm{GeV}]=0.3 B[\mathrm{~T}] R[\mathrm{~m}]
$$

- ...or if interested in the proximity of the interaction region
- Choose as reference point the perigee: the closest point to the origin of the reference frame (i.e. detector center)
- Write as a Taylor expansion in s / R
- this is an approximation!
- error $\mathrm{O}\left(s^{3} / R^{2}\right)$
- but it will be very useful for future examples

Perigee parameters

- Development in s / R :
$x(s)=x_{0}-h s \cos \lambda \sin \Phi_{0}-\frac{1}{2} \frac{s^{2} \cos ^{2} \lambda}{R} \cos \Phi_{0}$
$y(s)=y_{0}+h s \cos \lambda \cos \Phi_{0}-\frac{1}{2} \frac{s^{2} \cos ^{2} \lambda}{R} \sin \Phi_{0}$
$z(s)=z_{0}+s \sin \lambda$
- we can now introduce the perigee parameters:

$$
\begin{aligned}
& x(s)=-d_{0} \sin \varphi_{0}+s \sin \vartheta \cos \varphi_{0}+\frac{1}{2} \kappa s^{2} \sin ^{2} \vartheta \sin \varphi_{0} \\
& y(s)=d_{0} \cos \varphi_{0}+s \sin \vartheta \sin \varphi_{0}-\frac{1}{2} \kappa s^{2} \sin ^{2} \vartheta \cos \varphi_{0} \\
& z(s)=z_{0}+s \cos \vartheta
\end{aligned}
$$

- impact parameter d_{0} :
$x_{0}=d_{0} h \cos \Phi_{0}, \quad y_{0}=d_{0} h \sin \Phi_{0}$
notice it has a sign!
- the direction of the track at the perigee φ_{0} :

$$
\cos \varphi_{0}=h \sin \Phi_{0}, \quad \sin \varphi_{0}=-h \cos \Phi_{0}
$$

- the curvature $\kappa=\frac{h}{R}$
which includes the sign of the charge

- and the polar angle $\vartheta=\frac{\pi}{2}-\lambda$

High- p_{τ} parabolic approximation

- Starting from the parametric trajectory

$$
\begin{aligned}
& x(s)=-d_{0} \sin \varphi_{0}+s \sin \vartheta \cos \varphi_{0}+\frac{1}{2} \kappa s^{2} \sin ^{2} \vartheta \sin \varphi_{0} \\
& y(s)=d_{0} \cos \varphi_{0}+s \sin \vartheta \sin \varphi_{0}-\frac{1}{2} \kappa s^{2} \sin ^{2} \vartheta \cos \varphi_{0} \\
& z(s)=z_{0}+s \cos \vartheta
\end{aligned}
$$

- It is now interesting to define a change of coordinates $x, y \rightarrow x^{\prime}, y^{\prime}$, with the x^{\prime}-axis directed along the track direction:

$$
\begin{aligned}
x^{\prime} & =x \cos \phi_{0}+y \sin \phi_{0} \\
y^{\prime} & =-x \sin \phi_{0}+y \cos \phi_{0}
\end{aligned} \begin{array}{ll}
x^{\prime}(s) & =s \sin \vartheta \\
y^{\prime}(s) & =d_{0}-\frac{1}{2} \kappa s^{2} \sin ^{2} \vartheta \\
z(s) & =z_{0}+s \cos \vartheta
\end{array}
$$

- In these coordinates the trajectory has a simple expression in the longitudinal $\rho-z$ and transverse ρ, y^{\prime} planes:

$$
\begin{aligned}
& z=z_{0}+x^{\prime} \tan \vartheta \\
& y^{\prime}=d_{0}-\frac{1}{2} \kappa x^{\prime 2}
\end{aligned}
$$

- Sometimes $r=\sqrt{ }\left(x^{2}+y^{2}\right)$ is used instead of x^{\prime} :
- this is a "double" approximation valid for $r \gg d_{0}$
- If rotating to an axis near to the particle direction (the jet-axis for example)

$$
y^{\prime}=d_{0}+x^{\prime} \tan \left(\phi_{0}-\phi_{\mathrm{jet}}\right)-\frac{1}{2} \kappa x^{\prime 2}
$$

Impact parameter resolution

di Fisica Nucleare

- In proximity of the production vertex, one can ignore the $\kappa x^{\prime 2}$ term and consider the trajectory a straight line.
- Let's take two detector planes:
- at positions \mathbf{x}_{1} and \mathbf{x}_{2},
- resolution $\sigma_{\mathbf{y}}$ on the \mathbf{y}-coordinate measurement.
- The reconstructed trajectory is:

$$
y=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} x+\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}
$$

- The uncertainty on the impact parameter is:

$$
\begin{aligned}
\sigma_{d} & =\frac{\sqrt{x_{2}^{2}+x_{1}^{2}}}{x_{2}-x_{1}} \\
& =\sqrt{\frac{n^{2}+1}{(n-1)^{2}}} \sigma_{y}
\end{aligned}
$$

- where we introduced the lever arm: $\mathbf{n}=\mathbf{x}_{2} / \mathbf{x}_{1}$

Impact parameter resolution (2)

- Multiple scattering play a key role in the impact parameter resolution.
- Each material layer crossed by the particle before reaching the detector, deflects the particle by a random angle with r.m.s.:

$$
\theta_{0}=\frac{13.6 \mathrm{MeV}}{\beta c p} z \sqrt{\frac{l}{X_{0}}}\left(1+0.038 \ln \frac{l}{X_{0}}\right)
$$

where \boldsymbol{l} is the thickness of the crossed material.

- This deflection translate in an error on the impact parameter of

$$
\delta d=R \cdot \theta_{0}
$$

where \boldsymbol{R} is the distance of the material layer from the interaction point.

- Summing in quadrature all contributions:

$$
\sigma_{d}=\sqrt{\sum_{i} R_{i}^{2} \theta_{0, i}^{2}}
$$

- The sum is computed over all material layers till the first measured point (included).
- The formula for $\boldsymbol{\theta}_{\mathbf{0}}$ is valid in a plane perpendicular to the trajectory. If the track is tilted by an angle $\boldsymbol{\vartheta}$ with respect to the $x-y$ plane, the projected angle is magnified by a factor $\mathbf{1 / s i n} \boldsymbol{\vartheta}$.
- Also the crossed thickness \boldsymbol{l} increases in the same way, providing an additional $\mathbf{1} / \boldsymbol{\operatorname { s i n }}^{\mathbf{1 / 2}} \boldsymbol{\vartheta}$ factor.
- Momentum is measured from the bending of the trajectory.
- In collider experiments detectors are put inside the magnetic field.
- Measuring the sagitta s over a length L :

$$
\begin{aligned}
& s=R\left(1-\cos \frac{\theta}{2}\right) \approx R \frac{\theta^{2}}{8} \\
& =\frac{q B L^{2}}{8 p}
\end{aligned}
$$

- numerically:

$$
s[\mathrm{~m}]=\frac{0.3 B[\mathrm{~T}] L^{2}[\mathrm{~m}]}{8 p[\mathrm{GeV} / \mathrm{c}]}
$$

- If measurement by only three detectors:

$$
\begin{aligned}
& s=y_{2}-\frac{1}{2}\left(y_{1}+y_{3}\right) \\
& \sigma_{s}=\sqrt{3 / 2} \sigma_{y}
\end{aligned}
$$

- Momentum resolution is

$$
\frac{\sigma_{p}}{p}=\frac{\sigma_{s}}{s}=\frac{\sqrt{3 / 2} \sigma_{y} 8 p}{0.3 B L^{2}}
$$

- For multiple scattering deflections in the detector material:
$\delta y_{2}=\frac{L}{2} \delta \theta_{1} \quad \delta y_{3}=L \delta \theta_{1}+\frac{L}{2} \delta \theta_{2} \quad \Rightarrow \quad \delta s=\delta y_{2}-\frac{1}{2} \delta y_{3}=-\frac{L}{2} \delta \theta_{2} \quad \sigma_{s}=\frac{L}{2} \theta_{\mathrm{ms}, 2}$
- This is a multiple scatterring contribution to the curvature measurement.
- Adding the two terms, we get:

$$
\sigma_{s}=\sigma_{\mathrm{tracking}} \oplus \frac{\sigma_{\mathrm{MS}}}{p}
$$

- The relative momentum resolution becomes:

$$
\frac{\sigma_{p}}{p}=\frac{\sigma_{s}}{s}=\frac{8}{0.3 B L^{2}}\left(p \sigma_{\text {tracking }} \oplus \sigma_{\mathrm{MS}}\right)
$$

- resolution improves linearly with \boldsymbol{B} and with the detector point resolution
- the improvement is quadratic in \boldsymbol{L}
- relative momentum resolution:
- is constant at low momentum (MS)
- worsens with increasing momentum

Performance requirements

- Very interesting in current experiments are the heavy flavours (c, b, τ).
- lifetime of $\mathrm{O}\left(10^{-12} \mathrm{~s}\right)$
- impact parameters of order of $\mathrm{c}\langle\mathrm{t}\rangle \sim 300 \mu \mathrm{~m}$
- need a detector with resolution one order of magnitude better to detect them with high efficiency and purity.
- In ATLAS ($\mathrm{B}=2 \mathrm{~T}, \mathrm{~L}=1 \mathrm{~m}$) a 200 GeV particle has a sagitta of about $400 \mu \mathrm{~m}$.
- to be able to reconstruct accurately new high energy resonances the sagitta should be reconstructed with few tens of $\mu \mathrm{m}$ precision.

THE DETECTORS

Semiconductor detectors

- Semiconductor detectors consists of inversely polarized p-n junctions.
- Depleted region with only static charge density $\mathrm{N}_{\mathrm{D}}-\mathrm{N}_{\mathrm{A}}$
- thickness $W=\sqrt{\mu \rho \varepsilon\left(V_{\text {bias }}+V_{\mathrm{BI}}\right)}$
$\mu=$ carrier mobility $1350 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ for $\mathrm{e}, 450 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ for h
$\rho=$ resisitivity (detector grade Si is $1-10 \mathrm{k} \Omega / \mathrm{cm}$)
$\varepsilon=$ dielectric constant, $11.9 \varepsilon_{0} \quad \mathrm{~V}_{\mathrm{BI}}=$ built-in voltage $\sim 0.5 \mathrm{~V}$
- When a charged particle crosses the detector:
- collisions excite electrons to the conduction band, creating electron-hole pairs ($\sim 3.6 \mathrm{eV} /$ pair, ~ 80 pairs $/ \mu \mathrm{m}$)
- the mobile carriers are separated by the junction electric field, generating a current signal of few ns length.

Position sensitive detectors

- The first high resolution detectors were silicon microstrip.
- Use of microlithography from semiconductor electronics industry.
- Fine segmentation of collecting electrodes: $\mu \mathrm{m}$ level resolution
- Thickness of few hundreds $\mu \mathrm{m}$: signal of $10^{4} \mathbf{e}-\mathrm{h}$, detectable with low noise electronics

Various types of Si detectors

di Fisica Nucleare

Pixel tecnologies

Monolythics

Three Phase CCD Clocking

CCD
Integrated readout Low pitch
Low mass
Relatively slow readout Radiation hardness

DEPFET

DEpleted P-channel FET

Bump bonded readout front-end:

- more material
- pitch limited by electronics.
Fast
Rad-hard

Hybrids

Churgol Parlisit

EXAMPLES OF SYSTEMS

ALEPH@ LEP

- 2 planes Si microstrips $25 \mu \mathrm{~m}$ pitch
- Inner jet chamber
- Large volume Time Projection Chamber

ALTPRH DALI

- \quad Large vol

$-0.9 \mathrm{~cm}$

ATLAS and CMS at LHC

- 3 pixel layers
- $50 \mu \mathrm{~m} \times 400 \mu \mathrm{~m}$
$-1.4 \mathrm{~m}^{2}$ of silicon
- 80 million pixels
- 3 pixel layers
- $100 \mu \mathrm{~m} \times 150 \mu \mathrm{~m}$
- 10 strip layers
- 80-183 $\mu \mathrm{m}$ pitch
- $200 \mathbf{~ m}^{2}$ of silicon
- >9 million strips
- $\mathrm{B}=4 \mathrm{~T}$

A. Andreazza - Silicon Tracking

Resolution

The CMS experiment at the CERN LHC, JIST 3 (2008) S08004

Material and efficiency

Material contributes not only to resolution, but also to efficiency:

- Si is almost 100% efficient
- Interactions may deviate the particles, splitting the track.

LHCb

LHCb tracking

A. Andreazza - Silicon Tracking

TRACK FITTING

Track fitting: straight track model

- In our previous examples we used only the minimal number of points.
- Usually more measurements then the minimum:
- redundancy
- pattern recognition
- improved precision

- Simple straight line model: $y=a+b x$ expected crossing points: $y_{i}^{\prime}=a+b x_{i}$
- Best parameters are defined by minimizing the χ^{2} of the residuals between the measurements $\boldsymbol{y}_{\mathbf{i}}$ and the expectations $\boldsymbol{y}_{\mathbf{i}}^{\prime}$ from a set of parameters $(\boldsymbol{a}, \boldsymbol{b})$.
- If we neglet multiple scattering:

```
                                    inverse of
```

$\chi^{2} \quad \boldsymbol{\Gamma}\left(y_{i}-a-b x_{i}\right)^{2}=(\mathbf{Y}-\mathbf{A p})^{T} \mathbf{V}^{-1} \mathbf{Y}$ covariance matrix $\chi^{2}=\sum_{i=1,2,3} \frac{\left(y_{i}-a-b x_{i}\right)^{2}}{\sigma_{y_{i}}^{2}}=(\mathbf{Y}-\mathbf{A p}) \mathbf{V}^{-1}(\mathbf{Y}-\mathbf{A} \mathbf{p})$

$$
\mathbf{p}=\binom{a}{b} \quad \mathbf{Y}=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) \quad \mathbf{A}=\left[\begin{array}{ll}
1 & x_{1} \\
1 & x_{2} \\
1 & x_{3}
\end{array}\right] \quad \mathbf{V}=\left[\begin{array}{ccc}
\sigma_{y_{1}}^{2} & 0 & 0 \\
0 & \sigma_{y_{2}}^{2} & 0 \\
0 & 0 & \sigma_{y_{3}}^{2}
\end{array}\right]
$$

Track fitting: multiple scattering

- In reality $\boldsymbol{y}_{\mathrm{i}}-\boldsymbol{y}_{\mathrm{i}}^{\prime}$ contains contributions from multiple scattering:

$$
\begin{array}{l|l}
y_{1}=a+b x_{1}+\varepsilon_{1} & \begin{array}{l}
\varepsilon=\text { measurement error } \\
\delta \theta=\text { m.s. deflection }
\end{array} \\
y_{2}=a+b x_{2}+\varepsilon_{2}+\left(x_{2}-x_{1}\right) \delta \theta_{1} \\
y_{3}=a+b x_{3}+\varepsilon_{3}+\left(x_{3}-x_{1}\right) \delta \theta_{1}+\left(x_{3}-x_{2}\right) \delta \theta_{2}
\end{array}
$$

- The definition of the covariance matrix is: $V_{i j}=\left\langle\left(y_{i}-y_{i}^{\prime}\right)\left(y_{j}-y_{j}^{\prime}\right)\right\rangle$
- Uncertainties are $\left\langle\varepsilon_{i}^{2}\right\rangle=\sigma_{y_{i}}^{2},\left\langle\delta \theta_{i}^{2}\right\rangle=\theta_{\mathrm{ms}, i}^{2}$
- Error sources are not correlated: $\left\langle\varepsilon_{i} \varepsilon_{j}\right\rangle=0, i \neq j ; \quad\left\langle\delta \theta_{i} \delta \theta_{j}\right\rangle=0, i \neq j ; \quad\left\langle\varepsilon_{i} \delta \theta_{j}\right\rangle=0$
- Diagonal elements:

$$
\begin{aligned}
& V_{11}=\left\langle\varepsilon_{1}^{2}\right\rangle=\sigma_{y_{1}}^{2} \\
& V_{22}=\left\langle\left(\varepsilon_{2}+\left(x_{2}-x_{1}\right) \delta \theta_{1}\right)^{2}\right\rangle=\left\langle\varepsilon_{2}^{2}\right\rangle+2\left\langle\varepsilon_{2}\left(x_{2}-x_{1}\right) \delta \theta_{1}\right\rangle+\left\langle\left(x_{2}-x_{1}\right)^{2} \delta \theta_{1}^{2}\right\rangle=\sigma_{y_{2}}^{2}+\left(x_{2}-x_{1}\right)^{2} \theta_{\mathrm{ms}, 1}^{2} \\
& V_{33}=\sigma_{y_{3}}^{2}+\left(x_{3}-x_{1}\right)^{2} \theta_{\mathrm{ms}, 1}^{2}+\left(x_{3}-x_{2}\right)^{2} \theta_{\mathrm{ms}, 2}^{2}
\end{aligned}
$$

Track fitting: multiple scattering

- In reality $\boldsymbol{y}_{\mathrm{i}}-\boldsymbol{y}_{\mathrm{i}}^{\prime}$ contains contributions from multiple scattering:

$$
\begin{array}{l|l}
y_{1}=a+b x_{1}+\varepsilon_{1} & \begin{array}{l}
\varepsilon=\text { measurement error } \\
\delta \boldsymbol{\theta}=\text { m.s. deflection }
\end{array} \\
y_{2}=a+b x_{2}+\varepsilon_{2}+\left(x_{2}-x_{1}\right) \delta \theta_{1} \\
y_{3}=a+b x_{3}+\varepsilon_{3}+\left(x_{3}-x_{1}\right) \delta \theta_{1}+\left(x_{3}-x_{2}\right) \delta \theta_{2}
\end{array}
$$

- The definition of the covariance matrix is: $V_{i j}=\left\langle\left(y_{i}-y_{i}^{\prime}\right)\left(y_{j}-y_{j}^{\prime}\right)\right\rangle$
- Uncertainties are $\left\langle\varepsilon_{i}^{2}\right\rangle=\sigma_{i}^{2},\left\langle\delta \theta_{i}^{2}\right\rangle=\theta_{\mathrm{ms}, i}^{2}$
- Error sources are not correlated: $\left\langle\varepsilon_{i} \varepsilon_{j}\right\rangle=0, i \neq j ; \quad\left\langle\delta \theta_{i} \delta \theta_{j}\right\rangle=0, i \neq j ; \quad\left\langle\varepsilon_{i} \delta \theta_{j}\right\rangle=0$
- Non-diagonal elements:

$$
\begin{aligned}
V_{12} & =V_{13}=0 \\
V_{23} & =\left\langle\left(\varepsilon_{2}+\left(x_{2}-x_{1}\right) \delta \theta_{1}\right)\left(\varepsilon_{3}+\left(x_{3}-x_{1}\right) \delta \theta_{1}+\left(x_{3}-x_{2}\right) \delta \theta_{2}\right)\right\rangle=\left\langle\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right) \delta \theta_{1}^{2}\right\rangle \\
& =\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right) \theta_{\mathrm{ms}, 1}^{2}
\end{aligned}
$$

Track fitting: multiple scattering

- Finally, the covariance V to be used in the χ^{2} minimization is:è

$$
\mathbf{V}=\left[\begin{array}{ccc}
\sigma_{y_{1}}^{2} & 0 & 0 \\
0 & \sigma_{y_{2}}^{2} & 0 \\
0 & 0 & \sigma_{y_{3}}^{2}
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \left(x_{2}-x_{1}\right)^{2} \theta_{\mathrm{ms}, 1}^{2} & \left(x_{3}-x_{1}\right)\left(x_{2}-x_{1}\right) \theta_{\mathrm{ms}, 1}^{2} \\
0 & \left(x_{3}-x_{1}\right)\left(x_{2}-x_{1}\right) \theta_{\mathrm{ms}, 1}^{2} & \left(x_{3}-x_{1}\right)^{2} \theta_{\mathrm{ms}, 1}^{2}+\left(x_{3}-x_{2}\right)^{2} \theta_{\mathrm{ms}, 2}^{2}
\end{array}\right]
$$

- The second matrix has:
- diagonal elements due to any previous material affecting the trajectory at a given plane.
- off-diagonal elements: present if a previous material layer affect the trajectory in more than one plane.
- In our case:
- scattering on plane 1
- affects the position in both plane 2 and plane 3

Global x^{2}

di Fisica Nucleare

- The technique described till now consists in the minimization of a χ^{2} involving all measurement points:

$$
\chi^{2}=(\mathbf{Y}-\mathbf{A p})^{T} \mathbf{V}^{-1}(\mathbf{Y}-\mathbf{A p})
$$

and therefore is indicated as a global $\boldsymbol{\chi}^{\mathbf{2}}$:

- requires the inversion of a NxN covariance matrix ($\mathrm{N}=$ number of measurements)
- has become popular with silicon tracking systems because tracks have few, precise measurements
- Our model assumes the whole track is a straight line:
- b is sort average track direction
- but we are interested in track direction at the production point
- Multiple scattering is taken into account by giving lower weights to points far away from the interaction region

How can it be improved?

Global x^{2}

- Insert scattering angles as part of the track model

track direction changes along x
- Additional parameters, with expectation value 0 and r.m.s. $\theta_{\text {ms }}$
- The same $\chi^{2}=(\mathbf{Y}-\mathbf{A p})^{T} \mathbf{V}^{-1}(\mathbf{Y}-\mathbf{A p})$ holds, but with the modified matrices:
$\begin{aligned} & \mathbf{p}=\left(\begin{array}{c}a \\ b \\ \delta \theta_{1} \\ \delta \theta_{2}\end{array}\right) \quad \mathbf{Y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ y_{3} \\ 0 \\ 0\end{array}\right) \quad \mathbf{A}=\left[\begin{array}{cccc}1 & x_{1} & 0 & 0 \\ 1 & x_{2} & x_{2}-x_{1} & 0 \\ 1 & x_{3} & x_{3}-x_{1} & x_{3}-x_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad \mathbf{V}=\left[\begin{array}{ccccc}\sigma_{y_{1}}^{2} & 0 & 0 & 0 & 0 \\ 0 & \sigma_{y_{2}}^{2} & 0 & 0 & 0 \\ 0 & 0 & \sigma_{y_{3}}^{2} & 0 & 0 \\ 0 & 0 & 0 & \theta_{\mathrm{ms}, 1}^{2} & 0 \\ 0 & 0 & 0 & 0 & \theta_{\mathrm{ms}, 2}^{2}\end{array}\right] \\ &- \text { The number of degrees of freedom does not change }\end{aligned}$
- Estimate multiple scattering instead of putting it into the weights
- Step-by-step updating procedure:
- use initial estimation of track parameters
- extrapolate to next measured point
- compare extrapolation with measurement
- derive updated track parameters
- Continue adding all points one at the time.
- For each point invert a matrix of size equal to the track parameters
- computation time is Nd^{3} instead of N^{3}
- Comparison allows for rejection of outliers
- can also be used during pattern recognition

production vertex
- Only providing basic idea of Kalman filtering
- one iteration of the fit, from detector plane $k-1$ to k
- see bibliography for more details
- At plane $k-1$ we have an estimation of the track parameters \mathbf{p}_{k-1}, with their covariance matrix \mathbf{C}_{k-1}.
- Extrapolate to plane k :

$$
\begin{array}{ll}
\tilde{\mathbf{p}}_{k}=\mathbf{f}\left(\mathbf{p}_{k-1}\right) \\
\tilde{\mathbf{C}}_{k}=\mathbf{F C}_{k} \mathbf{F}^{\mathrm{T}}+\mathbf{M}_{m s} & \mathbf{F}=\frac{\partial \mathbf{f}}{\partial \mathbf{p}}\left(\mathbf{p}_{k-1}\right)
\end{array}
$$

- $\mathbf{M}_{m s}$ includes the multiple scattering uncertainty in the extrapolation.
- On surface k we have some measurements \mathbf{m}_{k} with covariance \mathbf{V}_{k}.

- The updated parameters \mathbf{p}_{k} are obtained my minimizing a χ^{2} including:
- comparison of \mathbf{m}_{k} with expectations $\mathbf{y}_{k}\left(\mathbf{p}_{k}\right)$ from the track model
- the extrapolated parameters

$$
\begin{aligned}
\chi^{2}= & \left(\mathbf{m}_{k}-\mathbf{y}_{k}\left(\mathbf{p}_{k}\right)\right)^{\mathrm{T}} \mathbf{V}_{k}^{-1}\left(\mathbf{m}_{k}-\mathbf{y}_{k}\left(\mathbf{p}_{k}\right)\right) \\
& +\left(\tilde{\mathbf{p}}_{k}-\mathbf{p}_{k}\right)^{\mathrm{T}} \tilde{\mathbf{C}}_{k}^{-1}\left(\tilde{\mathbf{p}}_{k}-\mathbf{p}_{k}\right)
\end{aligned}
$$

- Try to develop the concrete expressions for a linear track fit:
- solutions in the back-up slides

APPLICATIONS

Invariant mass reconstruction

Higgs and momentum resolution

Future experiments at the ILC can perform a measurement of the total production rate from mass of the system recoiling agaist the Z

Separation of the Higgs signal in the $\mathrm{H} \rightarrow \mathrm{ZZ}$ decay at the LHC rely on accurate curvature determination.

Identification of short lived particles

Istituto Nazionale
di Fisica Nucleare

quark b $\sim 1.5 \mathrm{ps}$
quark c $\sim 0.5 \mathrm{ps}$
τ lepton 0.29 ps

Decay length:

$$
\sim \gamma \beta \mathrm{ct}
$$

Impact parameter:
$\sim \mathbf{c} \tau$
A. Andreazza - Silicon Tracking

$\mathrm{B}_{\mathrm{o}}^{0}$ oscillations

$\mathrm{Z} \rightarrow \tau \tau \rightarrow \mu \mu+4 v$

Conclusions

- I hope to have provided you with a quick overview of the very basics of charged particle tracking:
- how it works
- why it is useful
- ...and why Si detectors are great at that!
- Many topics not addressed here:
- detector technologies just shortly listed
- front-end electronics and position reconstruction (beyond just electrode segmentation)
- no mention of radiation damage
- pattern recognition and vertex reconstruction
- future intelligent trigger systems

All of these are very active and challenging research areas

Example

KALMAN FILTER FOR

 "STRAIGHT" TRACKS- Initial estimate of track parameters using j, k

$$
\begin{aligned}
& y=a_{j}+b_{j}\left(z-z_{j}\right) \\
& \mathbf{p}_{j}=\binom{a_{j}}{b_{j}}=\binom{y_{j}}{\frac{y_{k}-y_{j}}{z_{k}-z_{j}}} \quad \mathbf{C}_{j}=\left(\begin{array}{cc}
\sigma_{y_{j}}^{2} & -\frac{\sigma_{y_{j}}^{2}}{z_{k}-z_{j}} \\
-\frac{\sigma_{y_{j}}^{2}}{z_{k}-z_{j}} & \frac{\sigma_{y_{j}}^{2}+\sigma_{y_{k}}^{2}}{\left(z_{k}-z_{j}\right)^{2}}
\end{array}\right)
\end{aligned}
$$

- Extrapolate to point i :

$$
y=a_{j}+b_{j}\left(z-z_{j}\right) \Rightarrow y=a_{i}+b_{i}\left(z-z_{i}\right)
$$

$$
\widetilde{\mathbf{p}}_{i}=\binom{\widetilde{a}_{i}}{\widetilde{b}_{i}}=\binom{a_{j}-b_{j}\left(z_{j}-z_{i}\right)}{b_{j}}
$$

$$
\widetilde{\mathbf{C}}_{j}=\frac{1}{\left(z_{k}-z_{j}\right)^{2}}\left(\begin{array}{cc}
\left(z_{k}-z_{i}\right)^{2} \sigma_{y_{j}}^{2}+\left(z_{j}-z_{i}\right)^{2} \sigma_{y_{k}}^{2} & -\left(z_{k}-z_{i}\right) \sigma_{y_{j}}^{2}-\left(z_{j}-z_{i}\right) \sigma_{y_{k}}^{2} \\
-\left(z_{k}-z_{i}\right) \sigma_{y_{j}}^{2}-\left(z_{j}-z_{i}\right) \sigma_{y_{k}}^{2} & \sigma_{y_{j}}^{2}+\sigma_{y_{k}}^{2}
\end{array}\right)+\theta_{p, j}^{2}\left(\begin{array}{cc}
\left(z_{j}-z_{i}\right)^{2} & z_{j}-z_{i} \\
z_{j}-z_{i} & 1
\end{array}\right)
$$

which gives contribution to the χ^{2} for the parameters at i :

$$
\mathbf{p}_{i}=\binom{a_{i}}{b_{i}}
$$

$$
\chi^{2}=\left(\widetilde{\mathbf{p}}_{i}-\mathbf{p}_{i}\right)^{T} \widetilde{\mathbf{C}}^{-1}\left(\widetilde{\mathbf{p}}_{i}-\mathbf{p}_{i}\right)
$$

- The measurement at i gives the term:

$$
\begin{aligned}
& y=a_{i}+b_{i}\left(z-z_{i}\right) \\
& \mathbf{H}_{i}=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \mathbf{H}_{i} \mathbf{p}_{j}-y_{i}=a_{i}-y_{i} \\
& \chi^{2}=\frac{\left(y_{i}-a_{i}\right)^{2}}{\sigma_{y_{i}}^{2}}
\end{aligned}
$$

- And the new parameters are obtained by the minimization of:

$$
\chi^{2}=\left(\widetilde{\mathbf{p}}_{i}-\mathbf{p}_{i}\right)^{T} \widetilde{\mathbf{C}}^{-1}\left(\widetilde{\mathbf{p}}_{i}-\mathbf{p}_{i}\right)+\frac{\left(y_{i}-a_{i}\right)^{2}}{\sigma_{y_{i}}^{2}}
$$

- Which can be put in the general χ^{2} form: $\chi^{2}=(\mathbf{Y}-\mathbf{A p})^{T} \mathbf{V}^{-1}(\mathbf{Y}-\mathbf{A p})$

$$
\mathbf{p}=\binom{a_{i}}{b_{i}} \quad \mathbf{Y}=\left(\begin{array}{l}
\widetilde{a}_{i} \\
\widetilde{b}_{i} \\
y_{i}
\end{array}\right) \quad \mathbf{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right] \quad \mathbf{V}=\left[\begin{array}{cc}
\widetilde{\mathbf{C}}_{i} & \mathbf{0} \\
\mathbf{0} & \sigma_{y_{i}}^{2}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { whose solution is: } \\
& \mathbf{p}=\left(\mathbf{A}^{T} \mathbf{W} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{W} \mathbf{Y} \\
& \mathbf{C}_{i}=\left(\mathbf{A}^{T} \mathbf{W} \mathbf{A}\right)^{-1} \quad \mathbf{W}=\mathbf{V}^{-1}=\left[\begin{array}{cc}
\tilde{\mathbf{C}}_{i}^{-1} & \mathbf{0} \\
\mathbf{0} & 1 / \sigma_{y_{i}}^{2}
\end{array}\right]
\end{aligned}
$$

Kalman filter: example

- And finally, going to the interaction point:

$$
y=a_{0}+b_{0} z
$$

$$
\mathbf{p}_{0}=\binom{a_{0}}{b_{0}}=\binom{a_{i}-b_{i} z_{i}}{b_{i}}
$$

$$
\mathbf{C}_{0}=\left(\begin{array}{cc}
1 & -z_{i} \\
0 & 1
\end{array}\right) \mathbf{C}_{i}\left(\begin{array}{cc}
1 & 0 \\
-z_{i} & 1
\end{array}\right)+\theta_{p, i}^{2}\left(\begin{array}{cc}
z_{i}^{2} & -z_{i} \\
-z_{i} & 1
\end{array}\right)
$$

