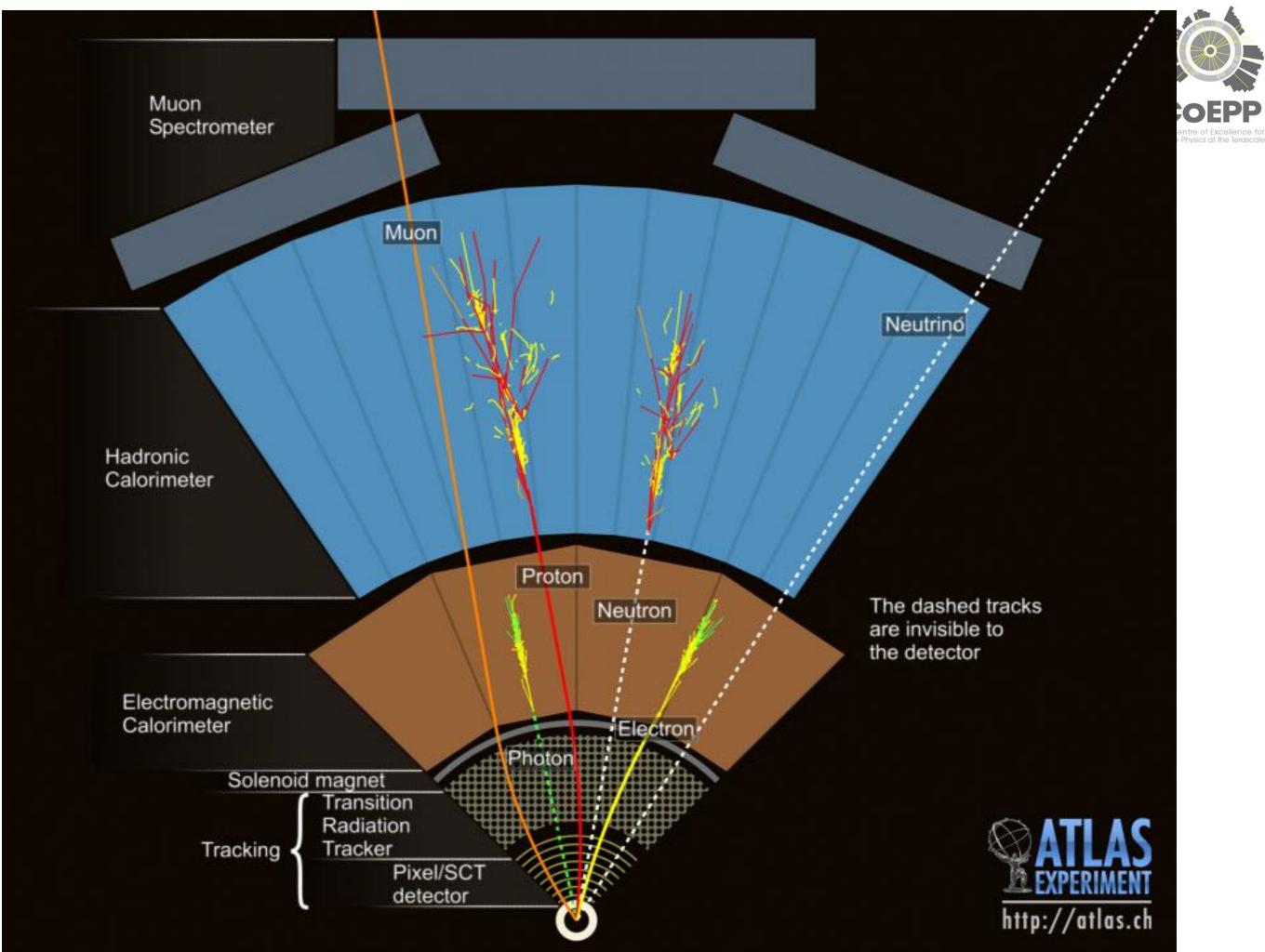
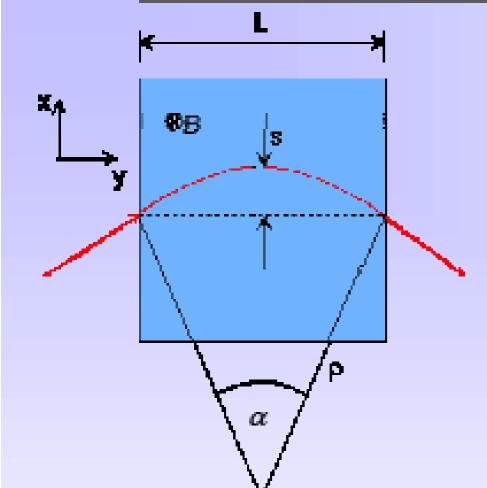
Interactions of Radiation with Matter

- Need to measure:
 - Particle momenta: bending in B-Field,
 - or Particle energy: absorb and measure response to estimate energy.
- We measure the charged particles via EM interaction.
- We measure "stable" particles travel through the detectors e, m, p, K, p
 - Some short-lived particles also seen. $t, B, D \text{ with } gct > from(\sim 0.1 - few) mm$



Momentum measurement



We measure only p-component transverse to B field!

$$p_T = qB\rho \rightarrow p_T (\text{GeV/c}) = 0.3B\rho (\text{T} \cdot \text{m})$$

$$\frac{L}{2\rho} = \sin \alpha/2 \approx \alpha/2 \qquad \rightarrow \quad \alpha \approx \frac{0.3L \cdot B}{p_T}$$

$$s = \rho(1 - \cos \alpha/2) \approx \rho \frac{\alpha^2}{8} \approx \frac{0.3}{8} \frac{L^2 B}{p_T}$$

the sagitta s is determined by 3 measurements with error s(x):

$$s = x_2 - \frac{x_1 + x_3}{2} \qquad \qquad \frac{\sigma(p_T)}{p_T} \bigg|^{\text{meas.}} = \frac{\sigma(s)}{s} = \frac{\sqrt{\frac{3}{2}}\sigma(x)}{s} = \frac{\sqrt{\frac{3}{2}}\sigma(x) \cdot 8p_T}{0.3 \cdot BL^2} \qquad \qquad \frac{\sigma(p_T)}{p_T} \bigg|^{\text{meas.}} \propto \frac{\sigma(x) \cdot p_T}{BL^2}$$

$$\frac{\sigma(p_T)}{p_T}^{meas.} \propto \frac{\sigma(x) \cdot p_T}{BL^2}$$

for N equidistant measurements, one obtains (R.L. Gluckstern, NIM 24 (1963) 381)

$$\frac{\sigma(p_T)}{p_T}\Big|_{p_T}^{meas.} = \frac{\sigma(x) \cdot p_T}{0.3 \cdot BL^2} \sqrt{720/(N+4)} \qquad \text{(for N \ge \sim 10)}$$

Charged particles can:

- Ionize Atoms
- Excite Atoms (and de-excite via fluorescence, scintillation)
- Generate Cerenkov radiation (and transition radiation)
- Bremsstrahlung gamma rays
- Gamma Rays can:
 - Generate photo-electrons (X-rays)
 - Compton Scatter
 - Pair Produce
- Hadrons can:
 - Interact with nucleus generating hadrons (charged and neutral)

Scattering

An incoming particle with charge z interacts elastically with a target of nuclear charge Z.

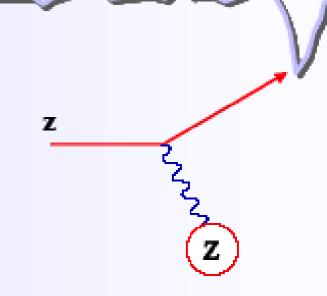
The cross-section for this e.m. process is

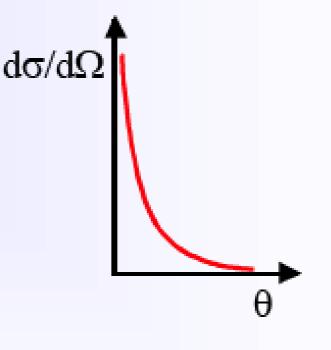
$$\frac{d\sigma}{d\Omega} = 4zZr_e^2 \left(\frac{m_e c}{\beta p}\right)^2 \frac{1}{\sin^4 \theta/2}$$

Rutherford formula

- Non-relativistic
- No spins

- Cross-section for θ → 0 infinite!
- Scattering does not lead to significant energy loss



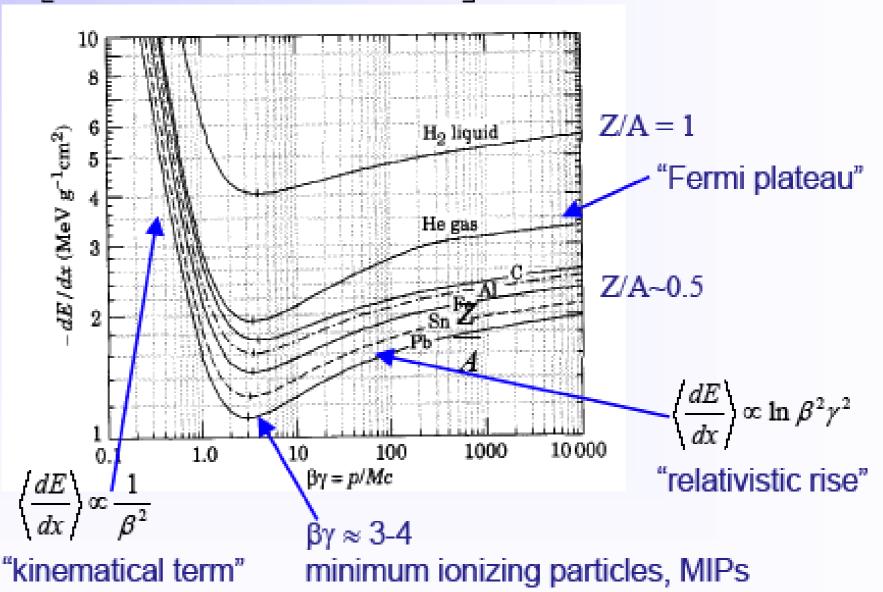


SERN Academic Training Programme 2004/2005

Energy loss by Ionisation only → Bethe - Bloch formula

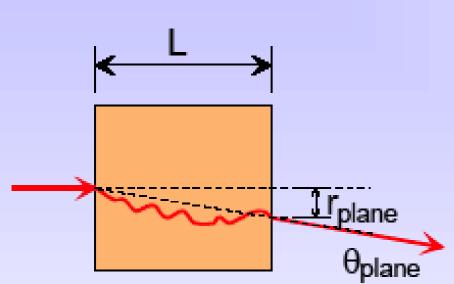
$$\left\langle \frac{dE}{dx} \right\rangle = -4\pi N_A r_e^2 m_e c^2 z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \gamma^2 \beta^2}{I^2} T^{\text{max}} - \beta^2 - \frac{\delta}{2} \right]$$

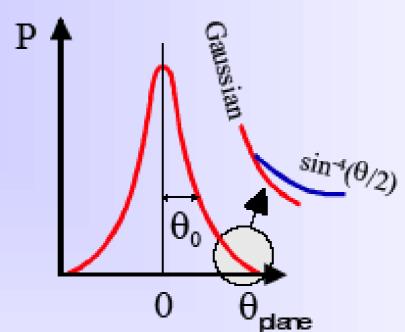
- dE/dx in [MeV g⁻¹ cm²]
- valid for "heavy" particles (m≥m_μ).
- dE/dx depends only on β, independent of m!
- First approximation: medium simply characterized by Z/A ~ electron density



In a sufficiently thick material layer a particle will undergo ...

Multiple Scattering





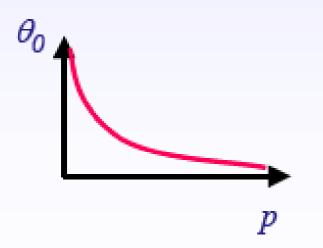
$$heta_0 = heta_{plane}^{RMS} = \sqrt{\left\langle heta_{plane}^2 \right\rangle}$$

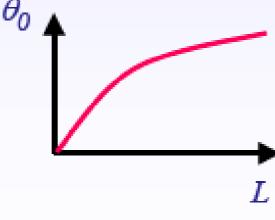
$$= \frac{1}{\sqrt{2}} \theta_{space}^{RMS}$$

Approximation

$$\theta_0 \propto \frac{1}{p} \sqrt{\frac{L}{X_0}}$$

 X_0 is radiation length of the medium (discuss later)



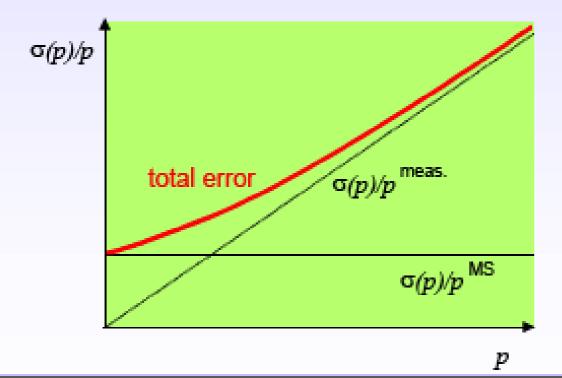


Back to momentum measurements:

What is the contribution of multiple scattering to $\frac{\sigma(p)}{p_r}$?

$$\begin{array}{c} \text{remember} & \frac{\sigma(p)}{p_T} \propto \sigma(x) \cdot p_T \\ & \\ \sigma(x) \Big|^{_{\mathit{MS}}} \propto \theta_0 \propto \frac{1}{p} \end{array} \right\} \quad \frac{\sigma(p)}{^{_{\mathit{P}_T}}} \Big|^{_{\mathit{MS}}} = \text{constant} \text{, i.e. independent of p !}$$

More precisely: $\frac{\sigma(p)}{p_T}^{MS} = 0.045 \frac{1}{B\sqrt{LX_0}}$



Example:

$$p_t = 1 \text{ GeV/c}, L = 1\text{m}, B = 1 \text{ T}, N = 10$$

$$\sigma(x) = 200 \ \mu \text{m}$$
: $\frac{\sigma(p_T)}{p_T}^{meas.} \approx 0.5\%$

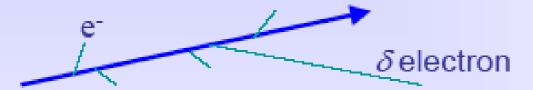
Assume detector (L = 1m) to be filled with 1 atm. Argon gas ($X_0 = 110$ m),

$$\frac{\sigma(p)}{p_T}^{MS} \approx 0.5\%$$

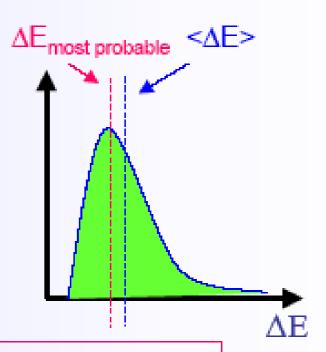
Real detector (limited granularity) can not measure <dE/dx>! It measures the energy ΔE deposited in a layer of finite thickness δx .

For thin layers or low density materials:

→ Few collisions, some with high energy transfer.



→ Energy loss distributions show large fluctuations towards high losses: "Landau tails"

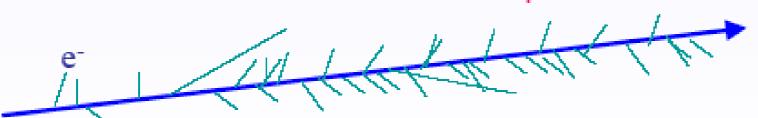


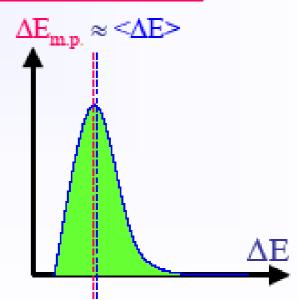
Example: Si sensor: 300 μm thick. ΔE_{m,p} ~ 82 keV

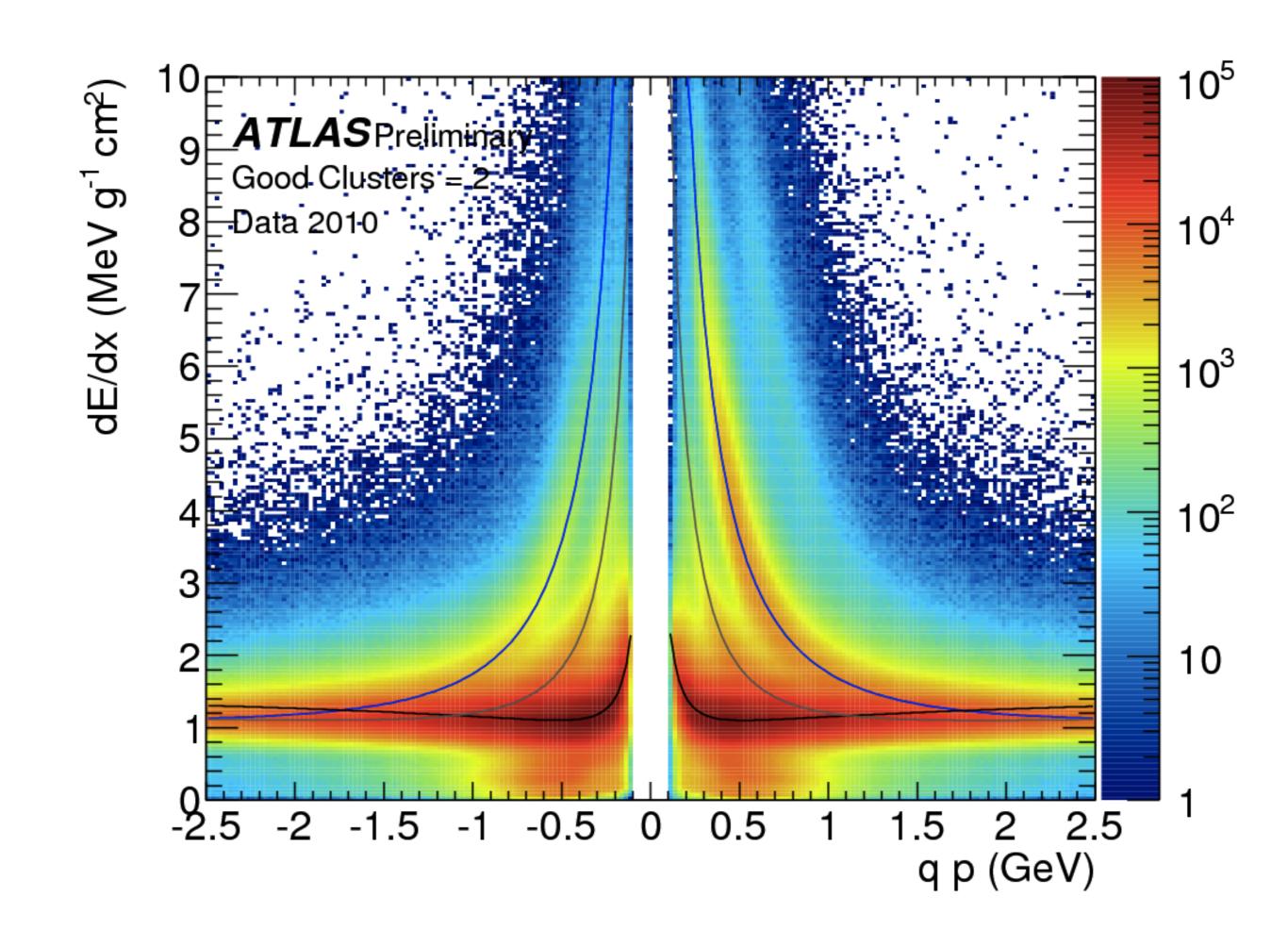
<ΔE> ~ 115 keV

For thick layers and high density materials:

- → Many collisions.
- → Central Limit Theorem → Gaussian shaped distributions.



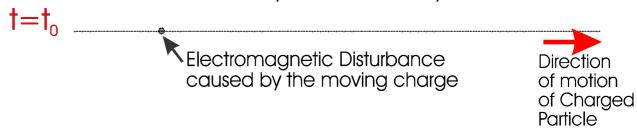


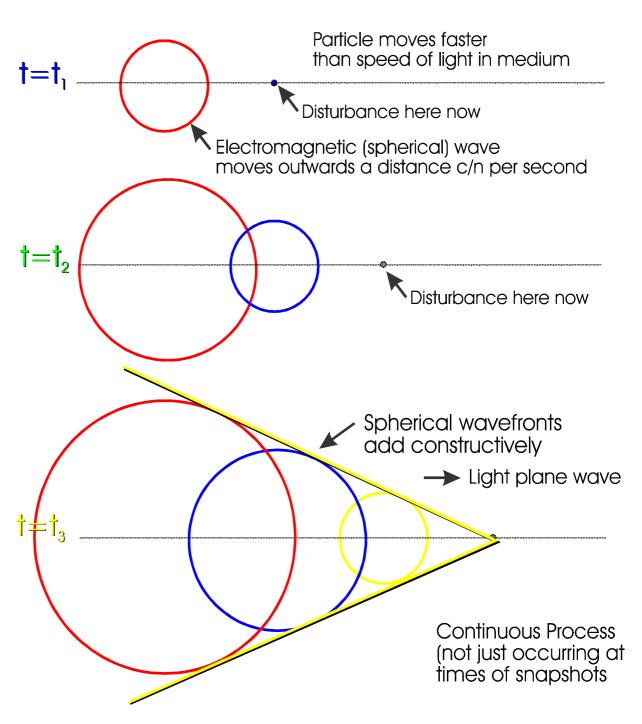


Cerenkov Light

Transition Radiation:
Similar physics
but at boundary of
materials

Consider Snapshots as a charged particle moves through material with refractive index n, such that particle velocity> n.c

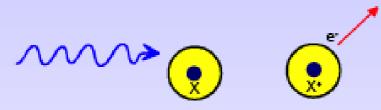




Interaction of photons

Photo-electric Effect

In order to be detected, a photon has to create charged particles and / or transfer energy to charged particles



 $\gamma + \text{atom} \rightarrow \text{atom}^+ + e^-$

Only possible in the close neighborhood of a third collision partner → photo effect releases mainly electrons from the K-shell.

Cross section shows strong modulation if $E_{\gamma} \approx E_{shell}$

$$\sigma_{photo}^{K} = \left(\frac{32}{\varepsilon^{7}}\right)^{\frac{1}{2}} \alpha^{4} Z^{5} \sigma_{Th}^{e} \qquad \varepsilon = \frac{E_{\gamma}}{m_{e} c^{2}} \quad \sigma_{Th}^{e} = \frac{8}{3} m_{e}^{2} \quad \text{(Thomson)}$$

At high energies ($\varepsilon >> 1$)

$$\sigma_{photo}^{K} = 4\pi r_e^2 \alpha^4 Z^5 \frac{1}{\varepsilon}$$

$$\sigma_{photo} \propto Z^5$$

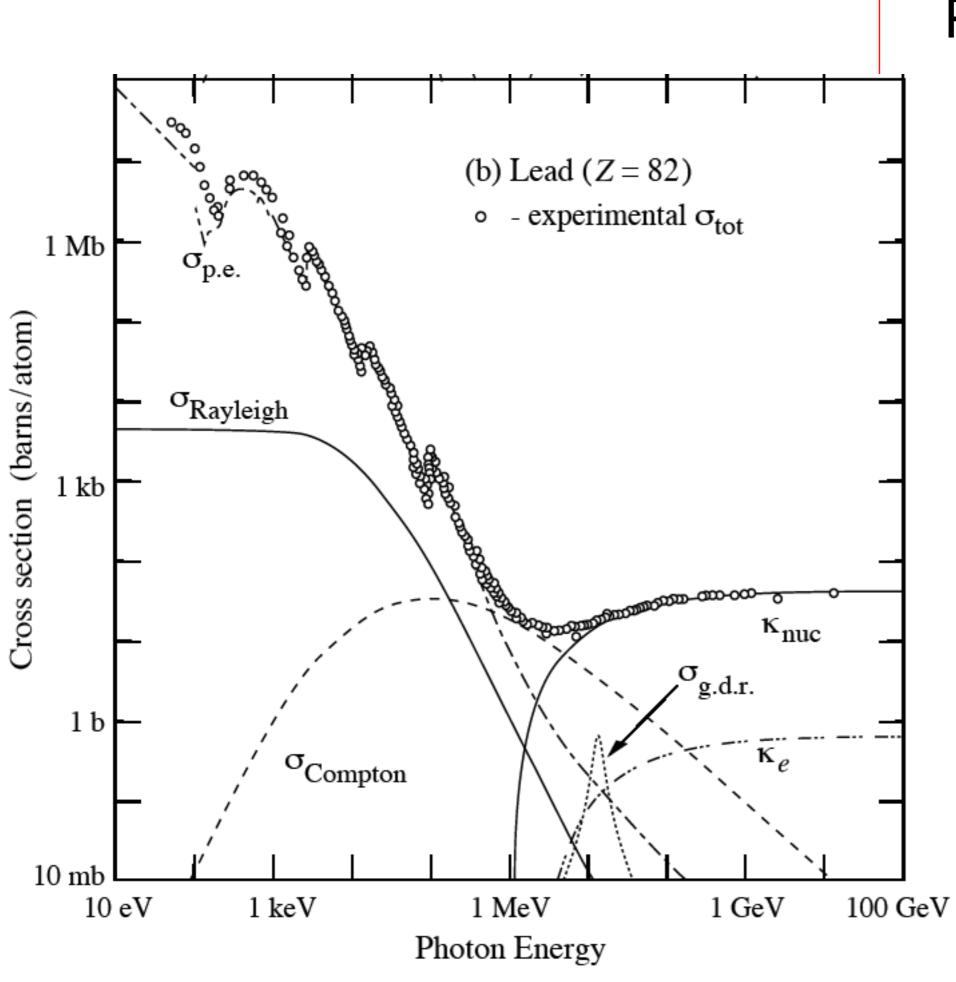
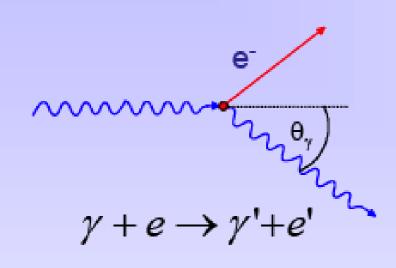


Photo-Electric Effect

Interaction of photons

Compton Scattering

Compton scattering:



$$E_{\gamma}' = E_{\gamma} \frac{1}{1 + \varepsilon (1 - \cos \theta_{\gamma})}$$

$$E_e = E_{\gamma} - E_{\gamma}'$$

Assume electron as quasi-free.

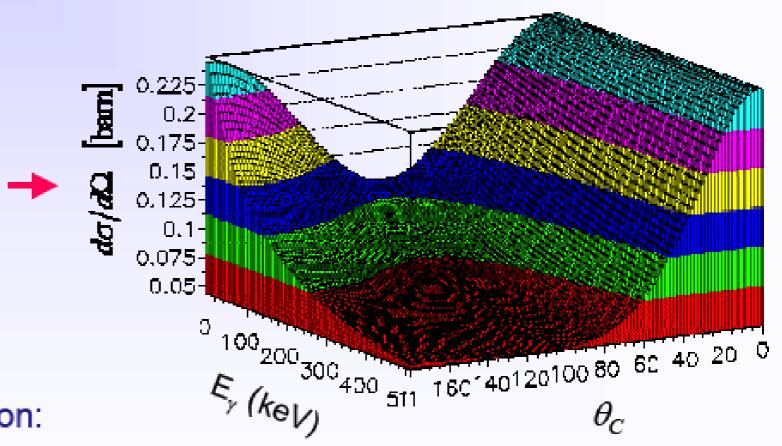
Klein-Nishina
$$\frac{d\sigma}{d\Omega}(\theta,\varepsilon)$$
 \longrightarrow

At high energies approximately

$$\sigma_c^e \propto \frac{\ln \varepsilon}{\varepsilon}$$

Atomic Compton cross-section:

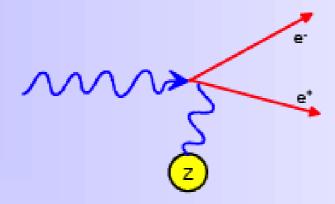
$$\sigma_c^{atomic} = Z \cdot \sigma_c^e$$



ERN Academic Training Programme 2004/2005

Pair Production

Pair production



$$\gamma + nucleus \rightarrow e^+e^- + nucleus$$

Only possible in the Coulomb field of a nucleus (or an electron) if $E_{\gamma} \ge 2m_e c^2$

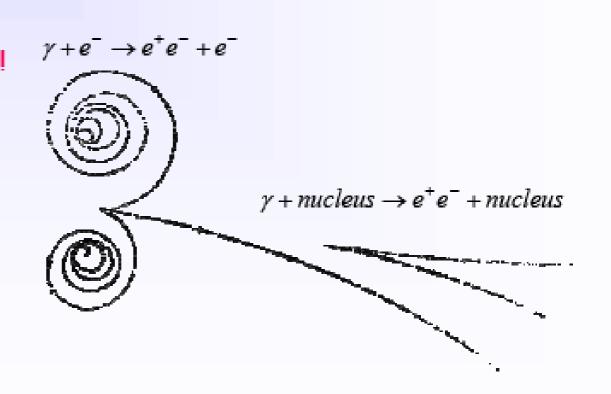
Cross-section (high energy approximation)

$$\sigma_{pair} \approx 4\alpha r_e^2 Z^2 \left(\frac{7}{9} \ln \frac{183}{Z^{\frac{1}{3}}}\right)$$
 independent of energy!
$$\approx \frac{7}{9} \frac{A}{N_A} \frac{1}{X_0}$$

$$\approx \frac{A}{N_A} \frac{1}{\lambda_{pair}}$$

$$\lambda_{pair} = \frac{9}{7} X_0$$

Energy sharing between e⁺ and e⁻ becomes asymmetric at high energies.



Cross section (barns/atom)

Interaction of photons

Photon Attenuation

In summary: $I_{\gamma} = I_0 e^{-\mu x}$

$$\mu: \text{ mass attenuation coefficient } \mu_i = \frac{N_A}{A} \sigma_i \quad [cm^2/g] \qquad \mu = \mu_{photo} + \mu_{Compton} + \mu_{pair} + \dots$$

$$(a) \text{ Carbon } (Z = 6)$$

$$\circ - \text{ experimental } \sigma_{tot}$$

$$\sigma_{p.e.}$$

$$1 \text{ Mb}$$

$$\sigma_{p.e.}$$

$$\sigma_{p.e.}$$

$$\sigma_{Rayleigh}$$

$$\sigma_{Rayleigh}$$

$$\sigma_{Rayleigh}$$

$$\sigma_{Compton}$$

$$\sigma_{g.d.r.}$$

$$\sigma_{g.d.r.}$$

$$\sigma_{g.d.r.}$$

$$\sigma_{g.d.r.}$$

$$\sigma_{Compton}$$

$$\sigma_{Compton}$$

$$\sigma_{g.d.r.}$$

$$\sigma_{Compton}$$

$$\sigma_{Compton}$$

$$\sigma_{Compton}$$

$$\sigma_{G.d.r.}$$

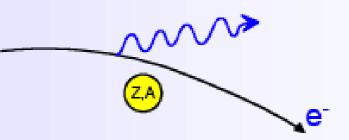
$$\sigma_{G.d$$

Photon Energy

EM Charged Particles

Energy loss by Bremsstrahlung

Radiation of real photons in the Coulomb field of the nuclei of the absorber medium



$$-\frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} z^2 \left(\frac{1}{4\pi\varepsilon_0} \frac{e^2}{mc^2}\right)^2 E \ln \frac{183}{Z^{\frac{1}{2}}} \left(\frac{E}{m^2} \right)$$

Effect plays a role only for e[±] and ultra-relativistic μ (>1000 GeV)

For electrons:
$$-\frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} r_e^2 E \ln \frac{183}{Z^{\frac{1}{2}}}$$

$$-\frac{dE}{dx} = \frac{E}{X_0} \qquad \Longrightarrow \quad E = E_0 e^{-x/X_0}$$

$$X_0 = \frac{A}{4\alpha N_A Z^2 r_e^2 \ln \frac{183}{Z^{\frac{1}{3}}}}$$
 radiation length [g/cm²] (divide by specific density to

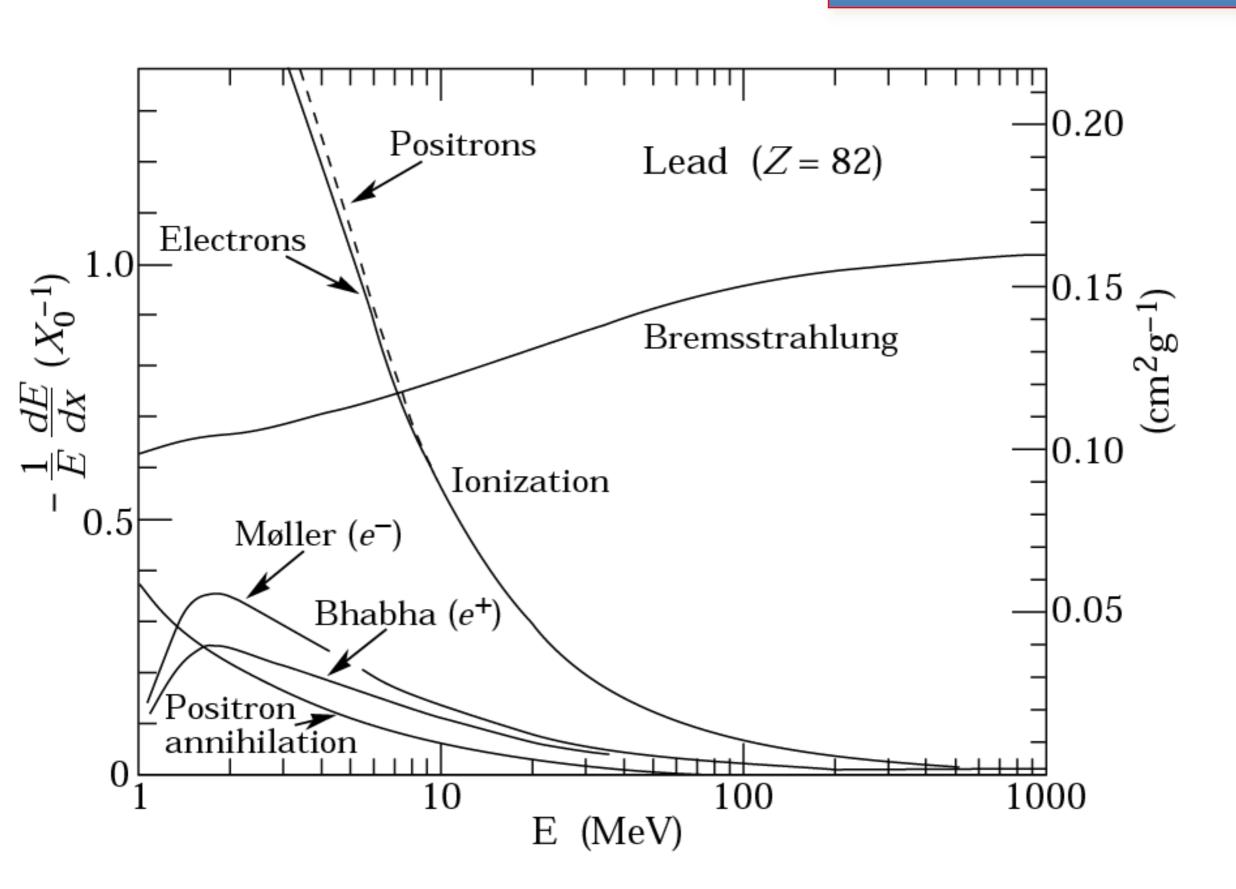
$$E = E_0 e^{-x/X_0}$$

(divide by specific density to get X_a in cm)

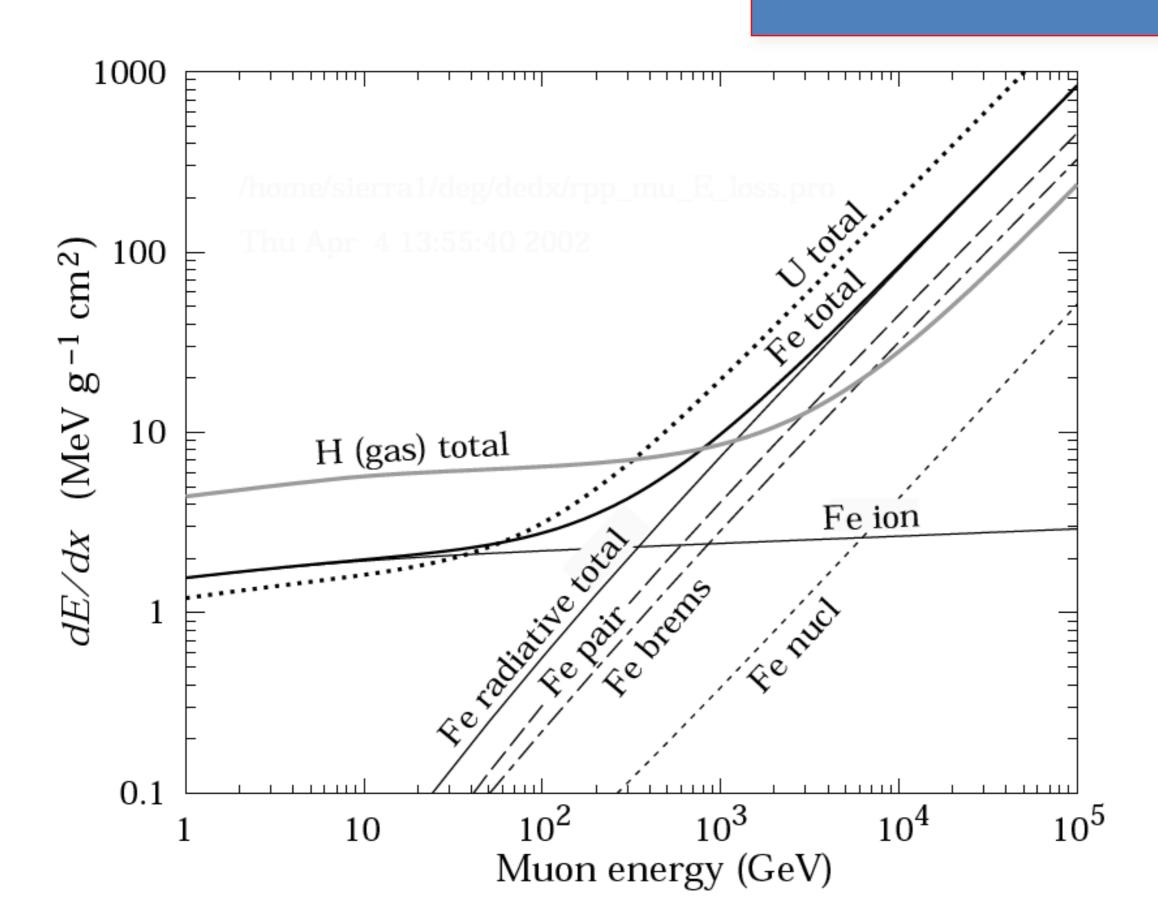
4/4

Electron Energy Loss

article Physics at the Terasco



Compared with muons

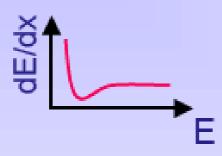


Reminder: basic electromagnetic into

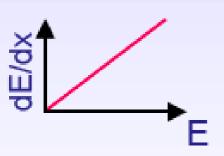
Photon Interactions

e+ / e-

Ionisation

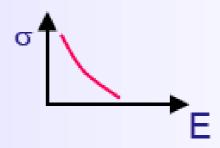


Bremsstrahlung

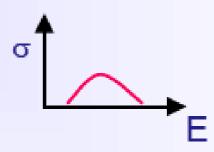


γ

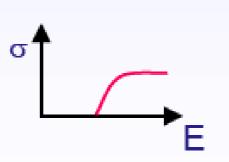
Photoelectric effect



Compton effect



Pair production



V

- Basic mechanism for calorimetry in paricle physics: formation of
 - ⇒ electromagnetic
 - or hadronic showers.
- Finally, the energy is converted into ionization or excitation of the matter.

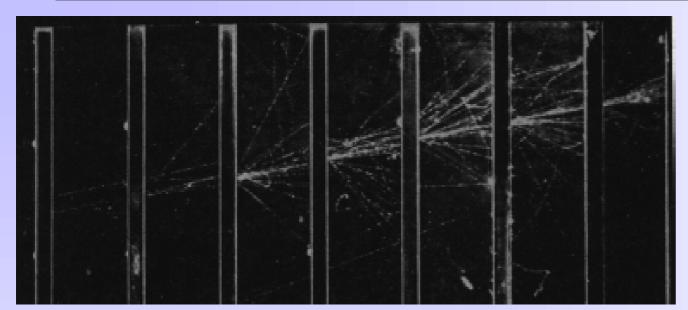
- Calorimetry is a "destructive" method. The energy and the particle get absorbed!
- Detector response ∞ E
- Calorimetry works both for
 - ⇒ charged (e[±] and hadrons)
 - and neutral particles (n,γ)

Complementary information to pmeasurement

Only way to get direct kinematical information for neutral particles

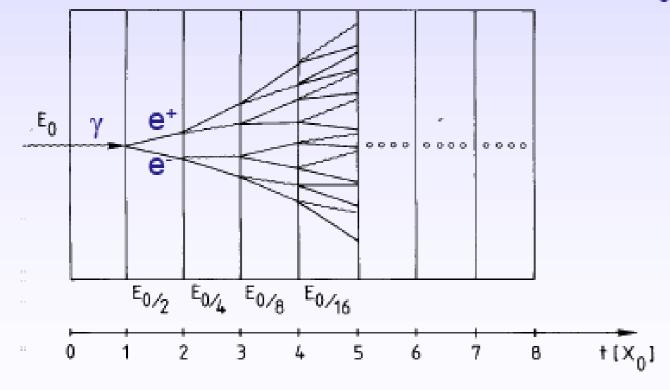
Electromagnetic cascades (showers

Electromagnetic Showers



Electron shower in a cloud chamber with lead absorbers

Simple qualitative model



- Consider only Bremsstrahlung and (symmetric) pair production.
- Assume: X₀ ~ λ_{pair}

$$N(t) = 2^t$$
 $E(t) / particle = E_0 \cdot 2^{-t}$

Process continues until $E(t) < E_c$

$$\begin{split} N^{total} &= \sum_{t=0}^{t_{\text{max}}} 2^t = 2^{(t_{\text{max}}+1)} - 1 \approx 2 \cdot 2^{t_{\text{max}}} = 2\frac{E_0}{E_c} \\ t_{\text{max}} &= \frac{\ln E_0 / E_c}{\ln 2} \end{split}$$

After $t = t_{max}$ the dominating processes are ionization, Compton effect and photo effect \rightarrow absorption of energy.

Critical Energy

Critical energy E_c

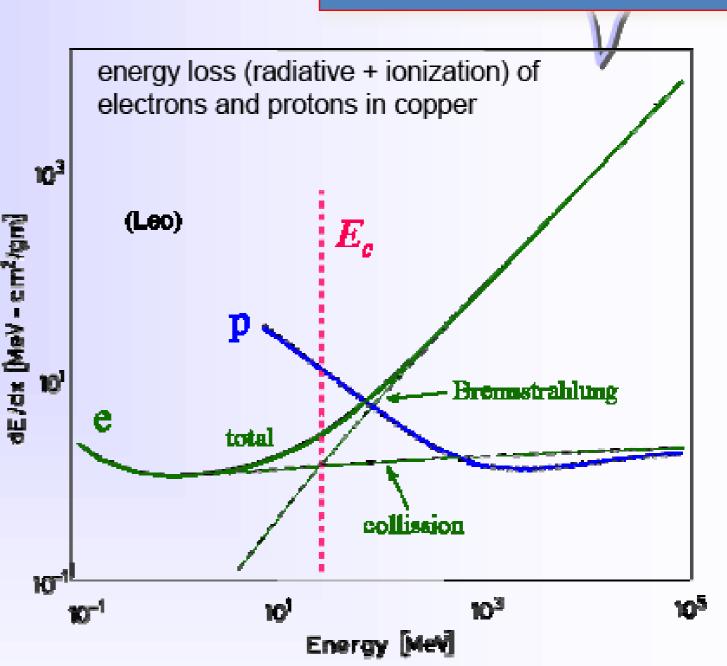
$$\frac{dE}{dx}(E_c)\Big|_{Brems} = \frac{dE}{dx}(E_c)\Big|_{ion}$$

$$\frac{dE}{dx}(E_c)\Big|_{Brems} = \frac{dE}{dx}(E_c)\Big|_{ion}$$
For electrons one finds approximately:
$$E_c^{solid+liq} = \frac{610MeV}{Z+1.24} \qquad E_c^{gas} = \frac{710MeV}{Z+1.24}$$

 $E_c(e^-)$ in Cu(Z=29) = 20 MeV

For muons
$$E_c pprox E_c^{elec} igg(rac{m_\mu}{m_e} igg)^2$$

 $E_c(\mu)$ in Cu ≈ 1 TeV



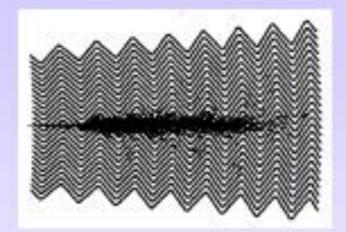
Unlike electrons, muons in multi-GeV range can traverse thick layers of dense matter. Find charged particles traversing the calorimeter? > most likely a muon > Particle ID

Example ECAL - sampling

4. Calorimetry

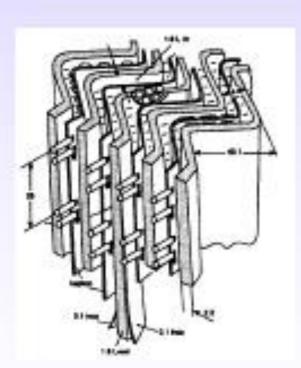
ATLAS electromagnetic Calorimeter

Accordion geometry absorbers immersed in Liquid Argon



Liquid Argon (90K)

- + lead-steal absorbers (1-2 mm)
- + multilayer copper-polyimide readout boards
- → Ionization chamber. 1 GeV E-deposit → 5 x10⁸ e⁻



- Accordion geometry minimizes dead zones.
- Liquid Ar is intrinsically radiation hard.
- Readout board allows fine segmentation (azimuth, pseudo-rapidity and longitudinal) acc. to physics needs

Test beam results $\sigma(E)/E = 9.24\%/\sqrt{E} \oplus 0.23\%$

Spatial resolution ≈ 5 mm / √E

Electromagnetic cascades

Electromagnetic Showers (II)

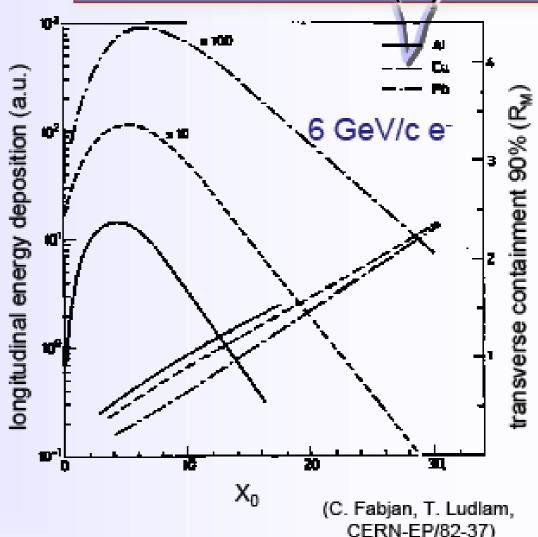
Longitudinal shower development

$$\frac{dE}{dt} \propto t^{\alpha} e^{-t}$$

Shower maximum at
$$t_{\text{max}} = \ln \frac{E_0}{E_c} \frac{1}{\ln 2}$$

95% containment
$$t_{95\%} \approx t_{\text{max}} + 0.08Z + 9.6$$

Size of a calorimeter grows only logarithmically with E_{θ}



Transverse shower development

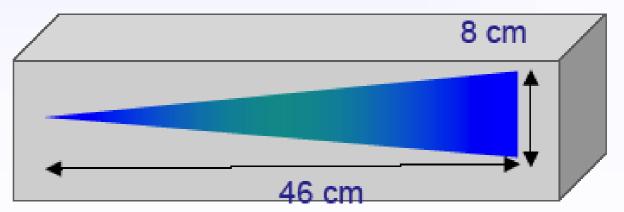
95% of the shower cone is located in a cylinder with radius 2 $R_{\rm M}$

Molière radius
$$R_M = \frac{21 \,\text{MeV}}{E_c} X_0 \, [g/cm^2]$$

Example: E_0 = 100 GeV in lead glass

$$E_c$$
=11.8 MeV $\rightarrow t_{max} \approx$ 13, $t_{95\%} \approx$ 23

$$X_0 \approx 2$$
 cm, $R_M = 1.8 \cdot X_0 \approx 3.6$ cm



Energy resolution of a calorimeter

EM Calorimeter Energy Resolution

$$N^{total} \propto \frac{E_0}{E_c}$$
 total number of track segments

$$T \propto \frac{E_0}{E_c} X_0$$
 total track length

$$T_{\rm det} = F(\xi)T$$
 $\zeta \propto \frac{E_{cut}}{E_c}$

$$\frac{\sigma(E)}{E} \propto \frac{\sigma(T_{\rm det})}{T_{\rm det}} \propto \frac{1}{\sqrt{T_{\rm det}}} \propto \frac{1}{\sqrt{E_0}} \quad \text{holds also for hadron calorimeters}$$

 $T_{\text{det}} = F(\xi)T$ $\zeta \propto \frac{E_{\text{cut}}}{E_{\text{c}}}$ detectable track length (above energy E_{cut})

More general:

$$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus b \oplus \frac{c}{E}$$

Also spatial and angular resolution scale like $1/\sqrt{E}$

stochastic term (see above)

'constant term'

- inhomogenities
- · bad cell intercalibration
- non-linearities

Quality factor !

'noise term'

- Electronic noise
- radioactivity
- pile up

Nuclear Interactions

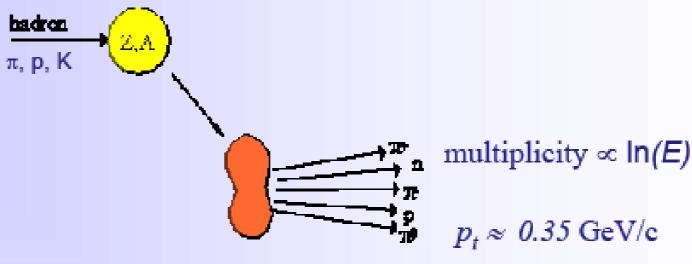
Hadronic Showers

The interaction of energetic hadrons (charged or neutral) with matter is determined by

inelastic nuclear processes.

Excitation and finally break-up of nucleus

→ nucleus fragments
+ production of secondary particles.



For high energies (>1 GeV) the cross-sections depend only little on the energy and on the type of the incident particle (π , p, K...).

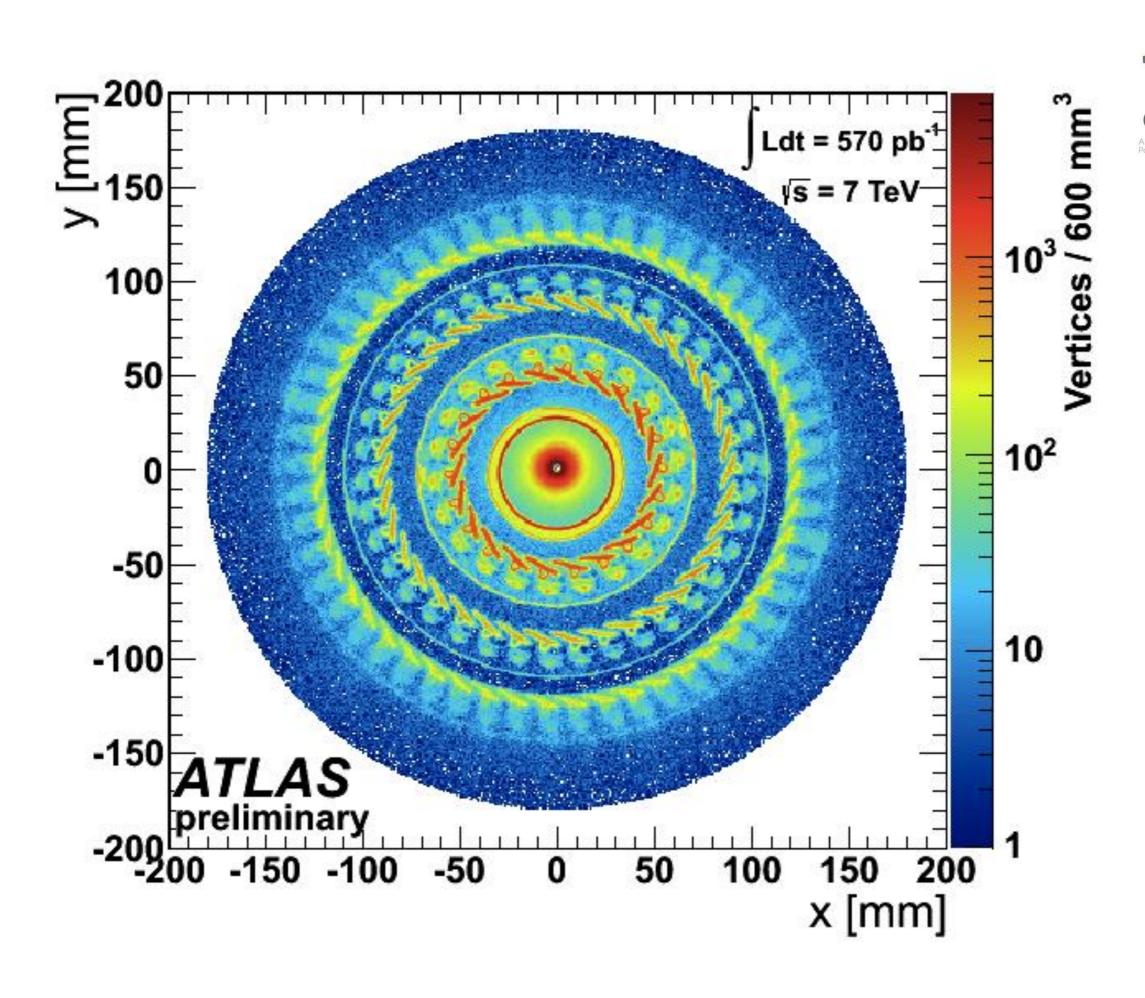
$$\sigma_{inel} \approx \sigma_0 A^{0.7}$$
 $\sigma_0 \approx 35 \, mb$

In analogy to X₀ a <u>hadronic absorption length</u> can be defined

$$\lambda_a = \frac{A}{N_A \sigma_{inel}} \propto A^{\frac{1}{4}}$$
 because $\sigma_{inel} \approx \sigma_0 A^{0.7}$

similarly a hadronic interaction length

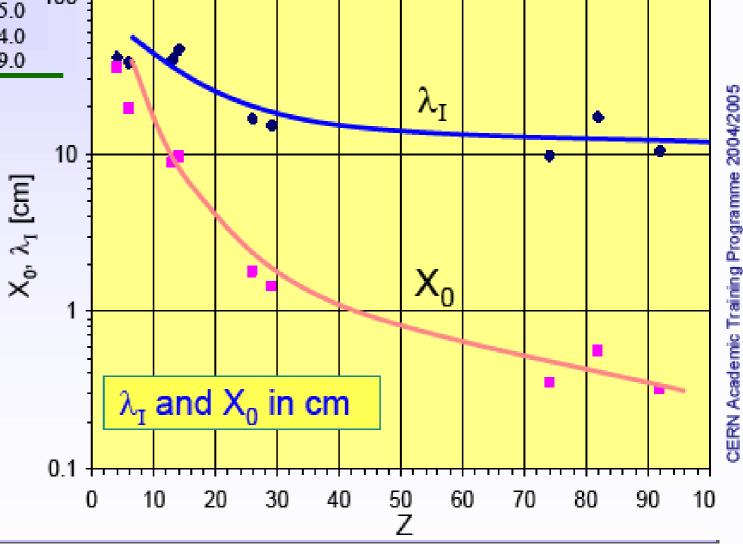
$$\lambda_I = \frac{A}{N_A \sigma_{total}} \quad \propto A^{\frac{1}{3}} \qquad \quad \lambda_I < \lambda_a$$



EM vs Hadronic Showers

Material	Z	A	ρ [g/cm³]	X0 [g/cm ²]	$\lambda_{\rm I}[{\rm g/cm}^2]$	Г
Hydrogen (gas)	1	1.01	0.0899 (g/l)	63	50.8	Т
Helium (gas)	2	4.00	0.1786 (g/l)	94	65.1	
Beryllium	4	9.01	1.848	65.19	75.2	
Carbon	6	12.01	2.265	43	86.3	
Nitrogen (gas)	7	14.01	1.25 (g/l)	38	87.8	
Oxygen (gas)	8	16.00	1.428 (g/l)	34	91.0	
Aluminium	13	26.98	2.7	24	106.4	
Silicon	14	28.09	2.33	22	106.0	
Iron	26	55.85	7.87	13.9	131.9	
Copper	29	63.55	8.96	12.9	134.9	100
Tungsten	74	183.85	19.3	6.8	185.0	IUU
Lead	82	207.19	11.35	6.4	194.0	
Uranium	92	238.03	18.95	6.0	199.0	
		·			·	

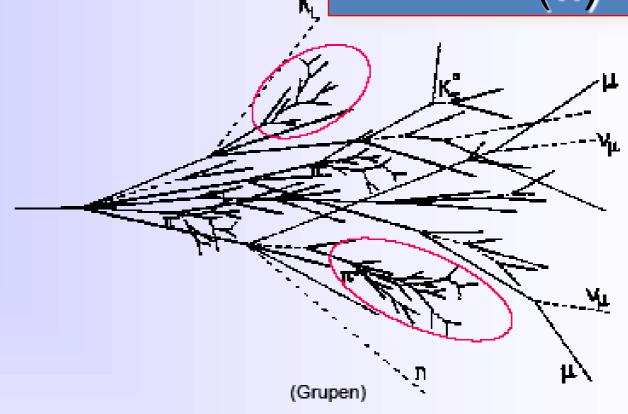
For
$$Z > 6$$
: $\lambda_{T} > X_{0}$



Hadronic cascades

Hadronic Showers (II)

Various processes involved. Much more complex than electromagnetic cascades.



A hadronic shower contains two components:

hadronic

- charged hadrons p,π[±],K[±]
- nuclear fragmets
- breaking up of nuclei (binding energy)
- neutrons, neutrinos, soft γ's, muons

electromagnetic

 \rightarrow electromagnetic cascades

$$n(\pi^0) \approx \ln E(GeV) - 4.6$$

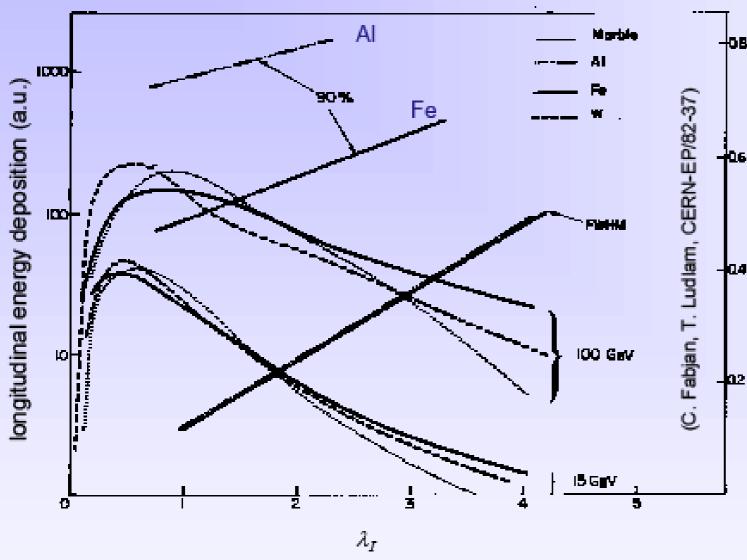
example E = 100 GeV: $n(\pi^0) \approx 18$

invisible energy → large energy fluctuations → limited energy resolution

Hadronic cascades

Hadronic Showers (III)

Longitudinal shower development



 $t_{\text{max}}[\lambda_I] \approx 0.2 \ln E[GeV] + 0.7$ $t_{95\%}[cm] \approx a \ln E + b$

Ex.: 100 Gev in iron ($\lambda_i = 16.7$ cm)

$$a = 9.4, b = 39$$

 $\rightarrow t_{max} = 1.6 \lambda_i = 27 \text{ cm}$
 $\rightarrow t_{95\%} = 4.9 \lambda_i = 80 \text{ cm}$

Laterally shower consists of core + halo.
95% containment in a cylinder of radius λ_I.

Hadronic showers are much longer and broader than electromagnetic ones!

