The MSSM Scale Invariant NMSSM Conclusions

Fine-tuning in the scale invariant NMSSM

Anibal D. Medina †

[†] School of Physics The University of Melbourne

Cairns COEPP Tropical Workshop

Tony Gherghetta, A.M., Michael Schmidt, Ben Von Harling Fine-tuning in the scale invariant NMSSM, JHEP 1302 (2013) 032

The MSSM

Fine tuning in the MSSM

• Fine tuning in the MSSM

Scale Invariant NMSSM

- Fine tuning in the scale invariant NMSSM
- Phenomenology

3 Conclusions

イロン イロン イヨン イヨン

The MSSM

Fine tuning in the MS

SUperSYmmetry (SUSY)

- The MSSM contains the minimal supersymmetric particle content compatible with the Standard Model (SM), N = 1 SUSY (one SUSY charge generator).
- Gauge couplings unify in the MSSM \implies strong hint towards GUT theories.
- If R-parity is conserved: avoid proton decay constraints, SUSY particles are produced in even numbers at colliders and the LSP is stable Dark Matter (DM) candidate.

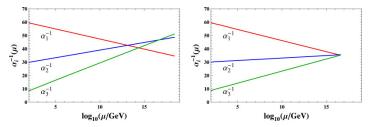


Figure: SM (left) vs MSSM (right).

Fine tuning in the MSSM

SUperSYmmetry (SUSY)

 SUSY avoids quadratically divergent quantum corrections to the Higgs mass involving a UV-cutoff Λ.

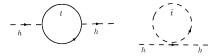


Figure: Top-stop contributions to Higgs mass.

- Quantum corrections still generate large logarithms $\sim \log(\Lambda/m_{\text{soft}}) \Rightarrow$ Summed up via Renormalization Group Equations (β -functions).
- Finite quantum corrections can be taken into account by effective action methods,

$$S_{eff} = \int d^4x \left\{ \sum_{n=0}^{\infty} Z_i^n \partial_\mu \phi_i^{\dagger} \partial^\mu \phi_i - \sum_{n=0}^{\infty} V_n \right\}$$

• At one-loop we recover the Coleman-Weinberg formula which in the DR scheme is

$$V_1 = \frac{1}{64\pi^2} \operatorname{STr} M^4 \left[\ln \left(\frac{M^2}{\mu_r^2} \right) - \frac{3}{2} \right]$$

The MSSM

Λ

Fine tuning in the MSSM

Energy scales involved:

Scale at which SUSY breaking is transmitted from hidden sector to visible sector

 m_{soft}

Scale at which EWSB happens

 $m_h \sim v_{EW}$ Po

Pole Higgs mass

C

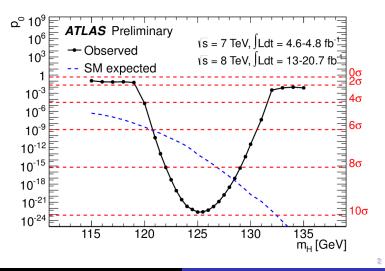
Fine tuning in the MSSM

Fine tuning in the MSSM

- In the MSSM Higgs quartic coupling at tree-level $\lambda_h \propto g^2$ with $g \in SU(2)_W$, (D-terms).
- However, finite loop corrections provide additional contributions to λ_h , the biggest coming from top/stop loops.
- MSSM Higgs mass in the decoupling limit $(m_A^2 \gg m_h^2)$ Carena et al.,

$$m_h^2 = m_Z^2 \cos^2 2\beta \left(1 - \frac{3}{8\pi^2} y_t^2 t\right) \\ + \frac{3}{4\pi^2} y_t^2 \left[\frac{1}{2} X_t + t + \frac{1}{16\pi^2} \left(\frac{3}{2} \frac{m_t^2}{v^2} - 32\pi\alpha_3\right) (X_t t + t^2)\right]$$

with
$$t = \ln \frac{m_{\text{soft}}^2}{m_t^2}$$
, $X_t = \frac{2(A_t - \mu \cot \beta)^2}{m_{\text{soft}}^2} \left(1 - \frac{(A_t - \mu \cot \beta)^2}{12m_{\text{soft}}^2}\right)$, $m_{\text{soft}} = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}} = \mu_r$.


• If $m_h \approx 126 \text{ GeV} \Rightarrow \text{large } m_{\Omega_p}^2$, $m_{U_3}^2$ (enter logarithmically) or large A_t (enters as a power) \Rightarrow lead to large (UV-logarithmically) sensitivity on the Higgs potential at quadratic order.

< D > < (2) > < (2) > < (2) >

Fine tuning in the MSSM

Higgs resonance at 126 GeV

Impressive ATLAS combined result for local probability p_0 of background-only to be more signal-like than the observation

Fine tuning in the MSSM

Fine tuning in the MSSM

 In the MSSM the minimization conditions (including finite loop-corrections) take the form,

$$m_Z^2 = \frac{\hat{m}_{H_u}^2 - m_{H_d}^2}{\cos 2\beta} - \hat{m}_{H_u}^2 - \hat{m}_{H_d}^2 - 2\mu^2, \qquad \frac{2b}{\sin 2\beta} = \hat{m}_{H_u}^2 + \hat{m}_{H_d}^2 + 2\mu^2$$

where $\hat{m}_{H_u}^2 \equiv m_{H_u}^2 + \partial V_{eff} / \partial v_u^2$ and $\hat{m}_{H_d}^2 \equiv m_{H_d}^2 + \partial V_{eff} / \partial v_d^2$.

• From RG evolution in the SUSY theory (in the leading-log approximation)

$$m_{H_u}^2(m_{\text{soft}}) = m_{H_u}^2(\Lambda) - \frac{3\gamma_t^2}{8\pi^2} \left[m_{Q_3}^2(\Lambda) + m_{u_3}^2(\Lambda) + A_t^2(\Lambda) \right] \ln \left[\frac{\Lambda}{m_{\text{soft}}} \right]$$

:. We must tune $m_{H_u}^2(\Lambda)$ in order to compensate large stop corrections \Rightarrow known as the "little hierarchy problem".

Fine tuning in the MSSM

Fine tuning in the MSSM

One way to quantify the tuning is with the measure Barbieri, Giudice

$$\Sigma^{\nu} \equiv \max_{\xi_i} \left| \frac{\partial \ln v^2}{\partial \ln \xi(\Lambda)} \right|$$

- How much does ν change when infinitesimally moving the independent parameters at the high scale Λ.
- In the MSSM the relevant parameters are $\xi_i = (m_{H_u}^2, m_{H_d}^2, \mu, b, m_{Q_3}^2, m_{U_3}^2, m_{d_3}^2, A_t, A_b, M_1, M_2, M_3).$
- Using the chain rule,

$$\Sigma^{\nu} = \max_{i} \left| \sum_{j} \frac{\xi_{i}(\Lambda)}{\nu^{2}} \frac{d\nu^{2}}{d\xi_{j}(m_{\text{soft}})} \frac{d\xi_{j}(m_{\text{soft}})}{d\xi_{i}(\Lambda)} \right|$$

 \Rightarrow

$$\left|\frac{d\log v^2}{d\log m_{H_u}^2(\Lambda)}\right| \simeq \left|\frac{3y_t^2}{8\pi^2 v^2} (m_{Q_3}^2(\Lambda) + m_{u_3}^2(\Lambda) + A_t^2(\Lambda)) \log\left[\frac{\Lambda}{m_{\text{soft}}}\right] \times \frac{dv^2}{dm_{H_u}^2(m_{\text{soft}})}\right|$$

Fine tuning in the MSSM

Fine tuning in the MSSM

• Neglecting the Coleman-Weinberg corrections in the MSSM and in the regime $\tan\beta\gg 1$

$$\frac{dv^2}{dm_{H_u}^2(m_{\rm soft})} \simeq -\frac{2v^2}{m_Z^2} + \mathcal{O}\left(\frac{1}{\tan\beta}\right)$$

- ... NO FREEDOM TO SUPPRESS DERIVATIVE AND REDUCE TUNING!
- In the MSSM with current experimental constraints and $m_h \approx$ 126 GeV, $\Sigma^{\nu} \gtrsim$ 500.

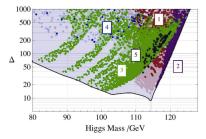


Figure: Cassel et al. 1101.4664 [hep-ph].

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Saving low energy SUSY

- Give up on small tuning: landscape, anthropic principle, split SUSY, ...
- Keep naturalness as guiding principle and add additional non-decoupling D-term contributions to the Higgs potential to raise Higgs mass at tree-level (enlarge weak gauge group)
- Add additional F-term contributions: e.g. NMSSM; introduce a gauge singlet chiral superfield S.

イロン イ団 とくほと イヨン

э.

ine tuning in the scale invariant NMSSM Phenomenology

• Fine tuning in the MSSM

- Fine tuning in the scale invariant NMSSM
- Phenomenology

イロト イヨト イヨト イヨト

æ

Scale Invariant NMSSM

- Introduce a gauge singlet chiral superfield S in addition to the MSSM superfield content.
- No mass scale in the new superpotential piece (\mathbb{Z}_3 symmetry):

$$W_{ extsf{NMSSM}} = \lambda SH_{ extsf{d}}H_{ extsf{u}} + rac{\kappa}{3}S^{3}$$

Soft breaking terms:

$$V_{soft} = m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + m_S^2 |S|^2 + \left(a_\lambda S H_d H_u + \frac{a_\kappa}{3} S^3 + h.c\right)$$

Notice from W_{NMSSM} that:

- If $\langle s \rangle \sim v$ for $\lambda \sim 1 \Rightarrow$ solve the μ -problem found in the MSSM.
- Ocntributions to the Higgs potential of the form F_SF^{*}_S generate a quartic coupling at tree-level proportional to λ².

< ロ > < 同 > < 三 > < 三 > -

Fine tuning in the scale invariant NMSSM Phenomenology

Scale Invariant NMSSM

- Assume CP conservation on the Higgs-singlet sector ⇒ scalar Higgs-singlet sector decomposes in 3 CP-even states, 2 CP-odd states and 1 charged Higgs.
- Neutral components: $H_u^0 = v_u + (h_u + ih_{u,l})/\sqrt{2}$, $H_d^0 = v_d + (h_d + ih_{d,l})/\sqrt{2}$ and $S = v_s + (s + is_l)/\sqrt{2}$.
- For neutral CP-even sector is useful to rotate to the basis

$$\left(\begin{array}{c}h\\H\\s\end{array}\right) = \left(\begin{array}{cc}\sin\beta & \cos\beta & 0\\-\cos\beta & \sin\beta & 0\\0 & 0 & 1\end{array}\right) \left(\begin{array}{c}h_u\\h_d\\s\end{array}\right)$$

where only $\langle h \rangle = v \neq 0$ (besides $\langle s \rangle = v_s \neq 0$) and $m_{hh}^2 = m_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta$.

- We want tan $\beta \approx 1$ to increase the tree-level Higgs mass (upper bound on the tree-level Higgs mass).
- If lightest eigenstate is mostly *h*, mixing with either H or s pulls mass down (level repulsion).

Scale Invariant NMSSM

- We take the best case scenario for tuning:
 - Keep only 3^{rd} generation squarks and gauginos light. All other sparticles have masses $\tilde{m} \sim \Lambda$.
 - 2 Take a low "messenger" scale (effective cutoff) $\Lambda = 20$ TeV, 100 TeV, 1000 TeV.
- In this way we obtain the largest regions of parameter space consistent with low fine tuning and whose collider and flavor constraints are ameliorated due to family splitting.
- Furthermore, low cutoff allows for a possible large value of $\lambda(m_{\text{soft}}) \gtrsim 1$ (if $\Lambda = M_{GUT} \Rightarrow \lambda(m_{\text{soft}}) \lesssim 0.65$).
- Models of λ -SUSY Barbieri, Hall, Nomura, Ruderman, . . .

... Loop corrections not only from the top/stop sector but also from the Higgs-singlet sector become very important and should be included.

< ロ > < 同 > < 三 > < 三 > -

Large λ helps

• Minimization conditions for the scale invariant NMSSM

$$m_Z^2 = \frac{m_{H_u}^2 - m_{H_d}^2}{\cos 2\beta} - m_{H_u}^2 - m_{H_d}^2 - 2\lambda^2 v_s^2.$$
$$\lambda^2 v^2 = \frac{2(a_\lambda v_s + \lambda \kappa v_s^2)}{\sin 2\beta} - m_{H_u}^2 - m_{H_d}^2 - 2\lambda^2 v_s^2$$
$$m_s^2 = \lambda \kappa v^2 \sin 2\beta - 2\kappa^2 v_s^2 - \lambda^2 v^2 - \frac{a_\lambda v^2}{2v_s} \sin 2\beta - a_\kappa v_s$$

• Parameters $\xi_i = (m_{H_u}^2, m_{H_d}^2, m_s^2, \lambda, \kappa, a_\lambda, a_\kappa, m_{Q_3}^2, m_{U_3}^2, m_{d_3}^2, A_t, A_b, M_1, M_2, M_3).$

In this case we find

$$\frac{dv^2}{dm_{H_u}^2(m_{\rm soft})} = \frac{\kappa}{\lambda^3}\cot 2\beta + \mathcal{O}\left(\frac{1}{\lambda^4}\right)$$

Suppressed for large values of λ .

 \therefore Large λ seems to help allowing for smaller tuning and/or larger stop masses.

Fine tuning in the scale invariant NMSSM Phenomenology

Large λ helps

• All plots have 5 % vev tuning or better.

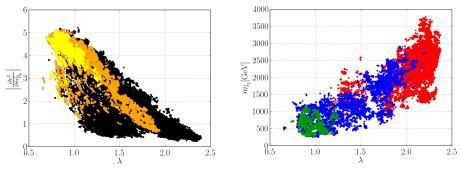


Figure: $|dv^2/dm_{H_u}^2| \text{ vs } \lambda$.

Figure: $m_{\tilde{t}_1}$ [GeV] vs λ .

イロト イ団ト イヨト イヨ

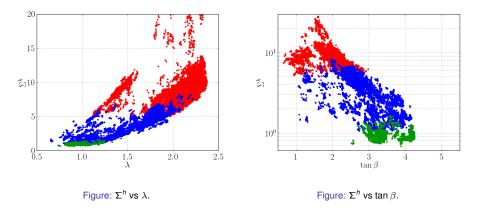
Large λ hurts

We can write the Higgs mass as,

$$m_h^2 = m_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \delta m_{h mix}^2 + \delta m_{h,stop}^2 + \delta m_{h,S}^2$$

- For tan $\beta \approx 1$ and $\lambda \gtrsim 1$ we "overshoot" the Higgs mass at tree-level, $m_{h,tree} \gg 126 \text{ GeV} (\text{for } \lambda \simeq 2.4, \ m_{h,tree}^2 \approx 10(126 \text{ GeV})^2).$
- For most of our points admixture modifies mass as most by 40 % . Thus pull-down effect is typically not large.
- $\delta m_{h,stop}^2$ generically provides a positive contribution to m_h^2 .
- The finite loop corrections from the Higgs-singlet sector can provide large negative contributions to m_h^2 .

This leads us to define a new tuning measure in analogy with the EW vev tuning:

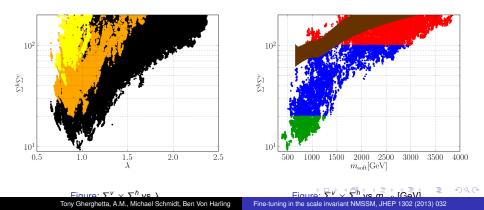

$$\Sigma^h \equiv \max_{\xi_i} \left| \frac{d \log m_h^2}{d \log \xi_i} \right|$$

Think of it as a tuning in the quartic Higgs coupling (contrary to the quadratic tuning associated with the *v*). ξ_i are the same as before except $m_{H_d}^2$, $m_{H_d}^2$ and m_s^2 have been replaced by v_u , v_d and v_s which are kept fixed.

Fine tuning in the scale invariant NMSSM Phenomenology

Large λ hurts

- $\Sigma^h \propto \lambda^2$
- At $\tan \beta \gtrsim 3$, m_h^2 decreases two-folded from $\sin 2\beta$ small and because larger $\tan \beta \Rightarrow$ larger higgsino contributions to the T-parameter $\Rightarrow \lambda$ must be smaller.


• • • • • • • • • • • • •

Fine tuning in the scale invariant NMSSM Phenomenology

Combined tuning

Define a combined tuning measure $\Sigma^h \times \Sigma^\nu$ (if two quantities are not correlated, the probablity involving both is $P(A \cap B) = P(A).P(B)$).

- Total tuning dominated at small λ by vev tuning and at large λ by Higgs mas tuning. Minimum at $\lambda\approx$ 1.
- Brown band corresponds to a characteristic point in the MSSM with $\mu = 200$ GeV, tan $\beta = 20$, $\Lambda = 20$ TeV, $m_a = 1$ TeV and A_t such that $m_h \in [124, 127]$ GeV. Always better than the MSSM.

Numerical Scan

- Markov Chain Monte Carlo
- We used a modified version of NMHDECAY, which is part of NMSSMTools 3.2.1, as well as MicrOMEGAs 2.4.5 for DM
- We scanned linearly in 14-dimensional parameter space

$\tan\beta$	$\tan \beta > 0.08$	<i>m</i> _{<i>Q</i>₃}	$\Delta_{\tilde{g}} m_{Q_3} < m_{Q_3} < 5$	<i>M</i> ₁	$0 < M_1 < 8$
μ	$ \mu < 1$	<i>m</i> _{<i>u</i>₃}	$\Delta_{\tilde{g}} m_{u_3} < m_{u_3} < 5$	M_2	$0 < M_2 < 8$
λ	$0 < \lambda < 3$	m_{d_3}	0 < m _{d3} < 8	M_3	$0.5 < M_3 < 8$
κ	$ \kappa < 2.75$	A _t °	$ \Delta_{\tilde{q}}A_t < A_t < 5$	V	174
A_λ	$ A_{\lambda} < 2$	Ab		Λ	20, 100, 1000
A_{κ}	$ A_{\kappa} < 1$				

- ⇒ We did not sample the full parameter space. Therefore, there is no statistical interpretation of the scatter plots.
- Likelihood function: product of Gaussians for the Higgs mass centered at 126 and for the VEV finetuning centered at 0.
- We impose the hard cuts summarised in the table as well as

$$|\xi(\Lambda) - \xi(m_{ ext{soft}})| < |\xi(\Lambda)| \quad ext{for } \xi = m_{Q_3}^2, m_{U_3}^2, m_{d_3}^2, A_t, A_b$$

similar to "gluino sucks the stop mass up" Arvanitaki, Craig, Dimopoulos, Villadoro(2012)

Electroweak Precision Tests (EWPT)

• impose EWPT at 2σ with $m_{h,ref} = 117 \text{ GeV}$ PDG(2012).

 $S_0=-0.04\pm0.09$, $T_0=0.07\pm0.08$ and correlation of 88% at 95% C.L.

- Consistent with previous analyses Barbieri et. al.(2006); Franceschini, Gori (2010), we find and singlet scalars do not contribute much to S,T
- (3rd gen) squarks: tan β can not be too large unless cancellation tan β ≠ 1 breaks custodial SU(2) → contribution to T
- Neutralino/chargino sector imposes strong constraint on λ as well as tan β

$$M_{\psi^0} = \begin{pmatrix} M_1 & 0 & -\cos\beta\sin\theta_W m_Z & \sin\beta\sin\theta_W m_Z & 0\\ \cdot & M_2 & \cos\beta\cos\theta_W m_Z & -\sin\beta\cos\theta_W m_Z & 0\\ \cdot & \cdot & 0 & -\mu & -\lambda\nu\sin\beta\\ \cdot & \cdot & -\mu & 0 & -\lambda\nu\cos\beta\\ \cdot & \cdot & \cdot & \cdot & -2\frac{\kappa}{\lambda}\mu \end{pmatrix}$$
$$M_{\psi^{\pm}} = \begin{pmatrix} 0 & X^T\\ X & 0 \end{pmatrix} \quad \text{with} \quad X = \begin{pmatrix} M_2 & \sqrt{2}m_W\sin\beta\\ \sqrt{2}m_W\cos\beta & 2\mu \end{pmatrix}$$

in gauge-basis $\psi^0 = (\tilde{B}, \tilde{W}^3, 1\tilde{H}^0_d, 1\tilde{H}^0_u, 1\tilde{S})$ and $\psi^{\pm} = (\tilde{W}^+, 1\tilde{H}^+_u, \tilde{W}^-, 1\tilde{H}^-_d)$

• We find $\tan \beta \lesssim 5$ depending on λ

イロン イ理 とく ヨン イヨン

Fine tuning in the scale invariant NMSSM Phenomenology

SUSY searches

Assuming a neutralino LSP, we conservatively exclude the following regions:

• gluino search: ${ ilde g} o b { ilde b} { ilde \chi}^0_1$ atlas-conf-2012-151

$$m_{ ilde{g}} < 1310$$
 if $m_{ ilde{\chi}_1^0} < 650$

• sbottom search PDG (2012); CMS-PAS-SUS-12-028; ATLAS-CONF-2012-106

$$m_{ ilde{b}} < 89$$

150 < $m_{ ilde{b}} < 650$ if $m_{ ilde{\chi}_1^0} < 230$

• stop search PDG(2012); ATLAS (1208.1447, 1208.2590)

$$m_{\tilde{t}} < 95.7$$

220 < $m_{\tilde{t}} < 500$ if $m_{\tilde{\chi}_{1}^{0}} < 160$

• chargino search $m_{\tilde{\chi}^\pm} <$ 94 _{PDG (2012)} The neutralino/chargino searches by ATLAS/CMS did not lead to further constraints.

イロン イ団と イヨン 一

Fine tuning in the scale invariant NMSSM Phenomenology

Higgs searches

$$R_X \equiv rac{\sigma(h) imes BR(h o X)}{\sigma(h_{
m SM}) imes BR(h_{
m SM} o X)}$$

Higgs resonance at 126

ATLAS (1207.7214), ATLAS-CONF-2012-162; ATLAS-CONF-2012-170; CMS (1207.7235), CMS-HIG-12-045

$$\begin{array}{ll} 0.81 < R_{ZZ} < 1.32, & 0.74 < R_{WW} < 1.40, \\ 0 < R_{b\bar{b}} < 1.10, & 0.27 < R_{\tau\tau} < 1.15, \end{array}$$

• Heavy Higgs searches CMS-PAS-Higgs-11-024,CMS-PAS-Higgs-11-041

$$\frac{\sigma(s_i) \times BR(s_i \to ZZ)}{\sigma(h_{\rm SM}) \times BR(h_{\rm SM} \to ZZ)} < 0.09$$

$$\frac{\sigma(s_i) \times BR(s_i \to WW)}{\sigma(h_{\rm SM}) \times BR(h_{\rm SM} \to WW)} < 0.2$$

Charged Higgs PDG(2012)

 $m_{H^\pm}\gtrsim 79.3$

< ロ > < 同 > < 三 > < 三 > -

Flavour Constraints

We use the following flavour physics constraints

• B-meson mixing HFAG (1207.1158)

$$\Delta M_s = (17.719 \pm 0.086) \,\mathrm{ps}^{-1}$$

 $\Delta M_d = (0.507 \pm 0.008) \,\mathrm{ps}^{-1}$

• rare B-decays HFAG (1207.1158)

$$Br(B^+ \to \tau^+ \nu_\tau) = (1.67 \pm 0.60) \times 10^{-4}$$
$$Br(B \to X_s \gamma) = (3.55 \pm 0.48 \pm 0.18) \times 10^{-4}$$

ullet recently measured rare decay $B^0_s o \mu^+\mu^-$ LHCb (1211.2674)

$$\mathrm{Br}(\textit{B}_{s}^{0}\rightarrow\mu^{+}\mu^{-})=3.2^{+3.0+1.0}_{-2.4-0.6}\times10^{-9}$$

イロト 不得 トイヨト イヨト 二日

Fine tuning in the scale invariant NMSSM Phenomenology

Particle Spectrum

• $\mu \in$ [105, 850] GeV.

• EW sector is light (possible light charginos) while coloured sector can be heavy.

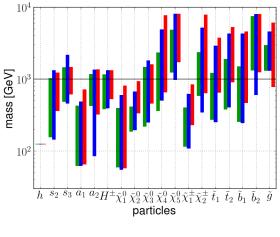
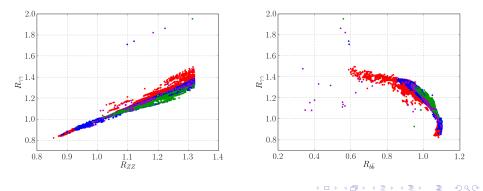


Figure: Particle spectrum

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

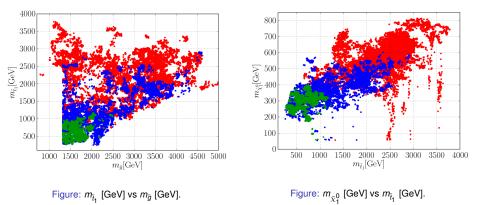

Fine tuning in the scale invariant NMSSM Phenomenology

Higgs signal strengths

- Signal strengths always deviate from complete SM-likeness.
- Decrease in $R_{b\bar{b}} \Rightarrow$ increase in $R_{\gamma\gamma} \approx R_{ZZ}$.
- Red points enhancement in $R_{\gamma\gamma}$ due to large λ but also somewhat heavy $\tilde{\chi}_1^+$

$$(g_{h\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}} \approx \sqrt{2}\lambda V_{s,h} \text{ and } V_{s,h} < 0).$$

• Interesting points with small tuning and enhanced $R_{\gamma\gamma}$ due to light charginos and $\lambda \sim 1.1$ and tan $\beta \gtrsim 3$, $m_{\tilde{\chi}_1^+} \approx 110$ GeV.



Tony Gherghetta, A.M., Michael Schmidt, Ben Von Harling

Fine-tuning in the scale invariant NMSSM, JHEP 1302 (2013) 032

• For total tuning better than 5 %, $m_{\tilde{t}_1} \lesssim$ 1.3 TeV, $m_{\tilde{g}} \lesssim$ 2.5 TeV, $m_{\tilde{v}^0} \lesssim$ 400 GeV.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fine tuning in the scale invariant NMSSM Phenomenology

Cosmological Constraints and Dark Matter

- Most of the time $\tilde{\chi}_1^0$ is mostly singlino or higgsino \Rightarrow underproduced.
- Colors: green (singlino), blue (higgsino), orange (wino), red (bino), purple (gravitino, $m_{3/2} \simeq 0.01 \text{ eV} \Rightarrow \Omega_{3/2} h^2 \ll \Omega_{WMAP-9} h^2$).
- For points with $\Omega_{DM}h^2 \approx 0.1$, dark matter is mostly Bino with small singlino component (compensates with large λ and κ).

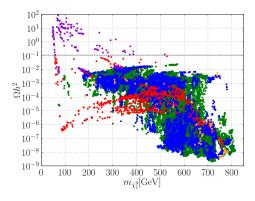
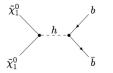



Figure: $\Omega \sim_0 h^2$ vs $m \sim_0$ [GeV].

The MSSM Scale Invariant NMSSM Conclusions

Fine tuning in the scale invariant NMSSM Phenomenology

Dominant annihilation channels to get correct dark matter relic density,

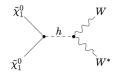


Figure: Resonant p-wave annihilation via *h* to bottom quarks

Figure: Resonant p-wave annihilation via h to W bosons

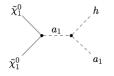


Figure: s-wave annihilation via lightest CP-odd a1

The MSSM Scale Invariant NMSSM Conclusions

Scale Invariant NMSSM

- Fine tuning in the scale invariant NMSSM
- Phenomenology

イロト イ団ト イヨト イヨト

Conclusions

- A natural Higgs with a mass $m_h \approx 126$ GeV in accordance with the latest LHC measurements can still be accomplished in SUSY by considering the second simplest extension of the SM, the NMSSM.
- Though large values of the parameter λ seem to help with the usual EW scale tuning, an additional tuning is induced in the effective Higgs quartic coupling which grows as λ².
- The total tuning measure defined as the product Σ^ν × Σ^h is minimized at λ ≈ 1 and can always be better than the tuning in the MSSM.
- For total tuning better than 5 %, $m_{\tilde{t}_1} \lesssim$ 1.3 TeV, $m_{\tilde{g}} \lesssim$ 2.5 TeV, $m_{\tilde{\chi}_1^0} \lesssim$ 400 GeV.
- Enhancement in the two photon Higgs discovery channel can be accomplished in regions of parameter space that have a and tan $\beta \gtrsim$ 3 with moderate tuning.
- A dark matter candidate can be obtained with a dominant Bino component and a small but non-vanishing singlino component.

< D > < (2) > < (2) > < (2) >