

How to run ions in the future?

D. Küchler BE/ABP/HSL

based on discussions with R. Scrivens and D. Manglunki

Outline

- The present performance of the machine
- What could we do to improve the performance?
- The oven for the lead production
- The daily operation
- Final remarks

From where the ions start?

A black box somewhere ...

From where the ions start?

The lead ions are delivered by the GTS-LHC ion source connected to Linac3.

Present operation conditions

- isotope: ²⁰⁸Pb (isotopically enriched material)
- charge states: Pb²⁹⁺ in the linac, Pb⁵⁴⁺ after stripping
- source type: electron cyclotron resonance ion source (ECRIS)
- source runs in afterglow mode (10 Hz, 50% duty cycle)
- pulse length in the linac 200 µs, up to 5 Hz for LEIR filling

Present performance

- records
 - 215 eµA Pb²⁷⁺ out of the spectrometer
 - 31 eµA Pb⁵⁴⁺ at the end of the linac
 - but not at the same time!
- operational
 - 100-120 eµA Pb²⁹⁺ out of the RFQ
 - 20-25 eµA Pb⁵⁴⁺ at the end of the linac (TRA25)
 - $\approx 50\%$ of the design value

Options to study

- improved source extraction system
 - new extraction electrodes and/or adding an einzel lens may improve the source emittance
 - higher extraction voltage may give more beam and improve the transmission, but would need a new RFQ
- improved or new Low Energy Beam Transport (LEBT)
 - reducing the space charge before the charge state separation may improve beam quality and reduce losses
 - the present LEBT is very long resulting in a low transmission
 - a new shorter LEBT adapted to the present source may have a higher transmission

Options to study (cont'd)

- 10 Hz repetition rate of the linac
 - source runs already at 10 Hz, most of the linac elements designed for 10 Hz, only some power converters in the ITF and the transfer line need an upgrade
 - all foreseen consolidations of the transfer lines take the 10 Hz operations into account
- multi-charge acceleration
 - several charge states in the linac (2 or 3) by "weakening" the charge stage separation in the spectrometer
 - after stripper only one charge state (Pb⁵⁴⁺)
 - need a test with linac <u>and</u> LEIR in an operational (!) state

Would a new source solve all problems?

- probably not
- present 3rd generation ECRIS (superconducting magnets, frequencies up to 28 GHz)
 - took more than 10 year to reach the peak performance
 - big emittance
 - unstable beams
- present electron beam ion sources (EBIS) do not deliver enough current
 - but for HIE-ISOLDE a project is ongoing to develop a source based on the RHIC EBIS which could deliver enough current
 - an EBIS has the advantage to switch in principle pulse to pulse the ion species
- new developments do not guarantee the success

 (e.g. the superconducting magnets for the MS-ECRIS never reached the specifications due to technological issues)

The oven

- two ovens are available during operation
- there are around 1.5 g of lead in the sample, consumption ~2 mg/h
- the 1st oven is good for around two weeks, the 2nd only for an other week (sees some plasma during the first two weeks), flexibility of some days
- at the end of the life time usually the tip of the oven is blocked
- an oven refill takes around 8 h (down time for all machines)

Improving the oven operation

- several filling methods were tested
- only the use of a fresh lead sample in an unused crucible gave some improvements concerning the source stability
- all other methods (e.g. molten lead) even shortened the life time
- an oven test stand is foreseen to study the oven (temperature distribution, relation between oven power and the evaporation of lead)
- the result of the studies may help to improve the oven and source tuning to get long term a more stable beam
- the oven redesign is not excluded, but may include a redesign of the whole source injection side (due to the present constraints)

The daily operation

- 3 experts able to tune and operate the Linac3 source, which needs daily tuning
- they also serve as Linac supervisors
- 4 weeks of LHC running are covered through careful planning, but longer times will need more trained staff (to operate the ion source one needs several years of practical experience!)
- higher operation workload as several parameters with tight limits have to be monitored carefully and request follow-up

Final remarks requests

- need a dedicated lead operation period in 2015 to make tests and verify simulations
- oven test stand in preparation
- dedicated source test stand needed (refused in Chamonix 2006)
 - can be used to test source modifications
 - can be used to train additional source specialists
 - would be roughly 5 MCHF (1.5 MCHF the source itself + test stand infrastructure, LEBT and some partial man power) + 10 man years (for the installation and commissioning)

Thank you for your attention!

