

RLIUP Session5 Summary

Massimiliano Ferro-Luzzi and Oliver Brüning

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Session Goal:

Session Goal:

- Review the HL-LHC upgrade plans related to the ion physics program and summarize the required machine upgrades.
- Analyze the options for extended ion runs during the connection of LINAC4 to the PSB.
- Review the schedule and operation options for the ion beam operation during the HL-LHC period.

Session Content:

uminosity

- Experiment perspective.
- Performance of the injectors with ions after LS1.
- [Options for running the LHC with ions during the LINAC4 connection].
- How to run ions in the future?
- Future heavy-ion performance of the LHC.

Experiments: [Emilio Meschi]

• Physics highlights:

- Quark-Gluon plasma and phase transition and the search for the critical point.
- Physics requirements wishes:
 - Need for control experiments (p-p data taking and p-Pb runs and runs at intermediate beam energies [e.g. Pb-Pb @ 5Tev, 5.5 TeV, p-Pb @ 5 TeV and 8.2 TeV]).

→ all asymmetric collision configurations imply configuration change between Beam1 and Beam2!

→ requires different machine configurations as compared to p-p operation!

- p-p runs require 5 order of magnitude lower luminosity in ALICE as for the GP experiments → Is it worth the effort?
- Background considerations require a vacuum of 5 10⁻⁹ or better.

Experiments Perspective:

- Performance wishes:
 - 3nbarn⁻¹ by LS3 in ATLAS. All experiments like to collect at least 1nbarn⁻¹ during RunII.
 - 10nbarn⁻¹ for ALICE after upgrade during LS2.
 - LHCb: p-Pb NOT at the end of ion program of RunII → compatibility with ALICE plan?
 - ALICE requires leveling during Pb-Pb and p-Pb (while ATLAS and CMS do not) → coordination!!!
 - The Pb-Pb runs in 2015 and 2016 can NOT be grouped (trigger configurations) → what is the minimum run separation times?
 - LHCb would like 10 times more integrated luminosity with p-Pb as compared to Run1.
 - All experiments prefer **NOT** to group the ion runs
 - ALICE polarity reversals on regular basis.
- Performance wishes after LS2:
 - Different beam species: Pb-Pb, p-Pb, Ar-Ar, p-Ar
 - 10 fold increase in beam performance expected from ALICE → collimation upgrade and vacuum conditions?

LHCf interested in running with Nitrogen and Oxygen? -> Physics case @ LHCC required!

29-31. October; Review of the LHC and Injector Upgrade Plans; Archamps

Performance of the injectors with ions after LS1: [Django]

- Performance summary of RunI:
 - 2 bunches with 200ns spacing in the PS → 24 bunches in the SPS → 360 bunches in the LHC @ collision
- Upgrade Plans:
 - Increasing the bunch intensity is not a viable option (IBS and luminosity burn off)
 - 100ns batch compression in the SPS (already envisaged for RunII in the PS but without the SPS injection upgrade → 432 bunches for RunII).
 - Increasing the number of injections would increase the injection time and thus the emittance growth → keep the number of PS injections into the SPS at 12 → requires SPS injection system upgrade (recuperated equipment from PSB energy upgrade, not requiring new kicker magnets) → 624 bunches in the LHC @ collision
 - Requires higher bunch intensities in LEIR (already above design and currently limited) → further studies required
 - Slip stacking in the SPS to be re-evaluated → smaller bunch spacing (e.g. 50ns?)

How to run ions in the future? [Detlef Kuchler]

- Performance summary of Runl:
 - Records:
 - 215 $e\mu A Pb^{27+}$ out of the spectrometer
 - 31 eµA Pb⁵⁴⁺ at the end of the linac
 - Operational:
 - 100-120 eµA Pb^{29+} out of the RFQ
 - 20-25 eµA Pb⁵⁴⁺ at the end of the linac (TRA25) (\approx 50% of the design value)
 - Changing ion species takes time (4 weeks Pb-> Ar & 10 weeks Ar -> Pb)
- Upgrade Plans:
 - 10Hz operation of the LINAC3 (source already running @10Hz)
 - Multi-charge acceleration.
 - New Oven design and test-stand (ca. 5MCHF)!
- Wishes and requirements:
 - Dedicated ion run in 2015 for Machine Development and tests

Future heavy-ion performance of the LHC: [John Jowett]

- Runll performance projections:
 - Bunch-by-bunch luminosity model (IBS and SPS injection)
 - 2.8 10^{27} cm⁻² s⁻¹ for ATLAS and CMS for Pb-Pb @ 6.5 Z TeV with 2011 scheme
 - 3.7 10²⁷ cm⁻² s⁻¹ for ATLAS and CMS for Pb-Pb @ 6.5 Z TeV with 100ns BC.
 - Changing the magnetic configuration wrt the standard p-p run will take 1 to 2 days.
 - Before ALICE upgrade luminosity needs to be leveled at 1 10²⁷ cm⁻² s⁻¹ (ATLAS and CMS are not limited in peak luminosity).
 - Luminosity decay dominated by burn-off
 - p-Pb: 2.5 7 10²⁹ cm⁻² s⁻¹ @ 4 Z TeV/c and 4.3 12 10²⁹ cm⁻² s⁻¹ @ 7 Z TeV/c
 → BPM resolution!
- RunIII projections:
 - 6 10²⁷ cm⁻² s⁻¹ for Pb-Pb @ 6.5 Z TeV with 100ns batch compression and SPS injection system upgrade (6 x design).
- Peak luminosity limitations:
 - Bound Free Pair Production and Electro Magnetic Disintegration and resulting secondary beams → DS collimators
 - IBS!!! → possibility of Stochastic Cooling a la RHIC, 200MHz and 800MHz RF in LHC?

Summary and Questions:

- LS1.5 (9month shutdown between LS1 and LS2) is not desired by experiments.
- ALICE needs a clear commitment to a 'standard running scenario' but exceptional modifications for a given year are possible.
- Promising upgrade options for the machine should be further pursued (e.g. Stochastic cooling, 200MHz and 800MHz RF).
- Operation with different ion species needs to be requested well in advance! LHCC recommendation?
- Beam rigidity and machine configuration requests?
- DS collimators for IR1 and IR5 not yet foreseen!
- Injector: one could connect LINAC4 (50MeV protons) in 12 weeks but at reduced performance and without gain for LS2
 - → LINAC2 backup and BCMS still to be analyzed
- LS2 duration with LINAC4 connection (as H- injector) will take 20.5

Reserve Transparencies

29-31. October; Review of the LHC and Injector Upgrade Plans; Archamps

Heavy Ion Physics

- pp physics probes quarks and gluons as "free particles"
- Nuclear physics studies the bound states
- HI physics studies the intermediate phases of QCD matter which prevailed shortly after the big-bang

- QGP: what is it
 - A theoretical model of the phase of matter where partons are not (completely) confined
 - Produced in High-energy nucleus-nucleus interactions
 - Large energy density (~15 GeV/fm³ at LHC) over a large volume (~ 5000 fm3 at LHC)
 - Very high equivalent temperature (T~300 MeV)
 - Strongly interacting
- How it is studied
 - Jets: energy loss mechanism collective effects in QCD, medium density
 - Heavy flavour: mass dependence of energy loss probe the medium transport properties
 - Quarkonium: quarkonium dissociation and regeneration
 probes deconfinement and medium temperature
 - Low-mass di-leptons: thermal radiation γ (→e+e-) to map temperature and evolution
 - Proton-lon: collective effects

Run 2: ALICE

Year	System	Luminosity
2015	pp – min bias (24 weeks)	10 ²⁹ -10 ³⁰ cm ⁻² s ⁻¹
	Pb Pb – 4 weeks	10 ²⁷ cm ⁻² s ⁻¹ - leveled
2016	pp – rare triggers (24 weeks)	5-10 10 ³⁰ cm ⁻² s ⁻¹
	Pb Pb – 4 weeks	10 ²⁷ cm ⁻² s ⁻¹ - leveled
2017	pp – rare triggers (24 weeks)	5-10 10 ³⁰ cm ⁻² s ⁻¹
	p Pb – min bias (2 weeks)	0.5-1 10 ²⁸ cm ⁻² s ⁻¹ - leveled
	p Pb – rare triggers (2 weeks)	1 10 ²⁹ cm ⁻² s ⁻¹ - leveled
2018	LS 2	

- For 2015 pp need 5 orders of magnitude luminosity reduction in IP2
 - no filling scheme tricks available at 25ns ~all bunches collide in ALICE (except effect of abort gap)
 - Larger β^* not an option due to aperture issues in IP2
 - A separation of order 5σ seems to be needed
 - Would the level of background in IP2 be lower than signal? Will depend on quality of vacuum
- ALICE studied the beam-gas background conditions in LSS2-L assuming a 5 10⁻⁹ vacuum.
 - the result is a rather strong MB trigger contamination (~50%) at L=1 10^{29} . on the other hand the contamination at L=1 10^{30} is ~10%, but a pileup of 10 in the TPC is the price to pay.
 - Further studies of optimization will be performed based on these results

31 10 20

Upgrades and studies

• Linac 3: increase intensity

- 10Hz pulsing (included in consolidation PIC)
- multiple charge acceleration (unsure of benefit for LEIR)

• LEIR: Intensity limitation

~+40% needed for additional splitting, but cause presently unknown

• PS: 50ns splitting or batch compression near transition

- Tests of 2-bunch batch compression to 50ns with Ar
- New cavity (Finemet)
- Transition-distortion optics; imperfections?
- SPS

Luminosity

- PFL on MKP + MSI-V septum for 100ns rise time injection / batch spacing
- New beam control allowing RF gymnastics for slip-stacking
 - Are resulting imperfections after slip stacking acceptable by the LHC?
- Improvement of beam behaviour on flat bottom (RF noise...)

Pb-Pb Summary: Peak luminosity & intensity (w.r.t. nominal) according to different schemes

Nominal (as in design report)
200ns Intermediate beam (performance of 2011)
100 ns beam unsplit (performance of 2013)
100ns beam split (140% performance of 2013)
100 ns beam split w slip stacking
100 ns beam unsplit w slip stacking

50ns split + batch compression

• 50ns unsplit + batch compression

Batch spacing in the SPS (ns)

Schedule with LS1.5

Ar 2014-2015 ... first Pb-Pb run in November 2015 same as baseline

- Xe commissioning (Linac3/LEIR/PS/SPS) start early 2016 + FT Run in September 2016
 - Switch to Pb November 2016, recommission Pb ion chain
 - Stop protons 3 weeks before Xmas break
- Pb source standby during Xmas (cf Xmas 2012)
- Restart Ph ion chain in January
- 5.5 (max) months Pb run:
- Ion MDs in chain
- Primary Pb in NA
- 8+ week LHC Pb-Pb run (grouping of 2016 & 2017 "November" runs)
- Restart with protons, next Pb ion run as p-Pb just before LS2 (2019?)

Design Baseline and Performance Achieved

"p-Pb not part of baseline"

	Pb-Pb				p-Pb	
	Baseline	Injection 2011	Collision 2011	Injection 2013	physics case paper	2013
Beam Energy [Z GeV]	7000	450	3500	450	7000	4000
No. lons per bunch []	0.7				0.7	
Transv. normalised emittance []	1.5				1.5	
RMS bunch length []	7.94				7.94	
Peak Luminosity []	1		↑		115	110
$= 2 \times \text{design scaled with } E^2$						

Reminder: Pb-p luminosity production in 2013

Performance for p-Pb in Run 2

E (<i>Z</i> GeV/c)	4	7	
	4264	7463	
(10 ¹⁰ protons/bunch)	1.8–5?	1.8–5?	
(10 ⁸ ions/bunch)	1.6	1.6	
	430	430	
(m)	0.5	0.5	
(µm.rad)	3.5	3.5	
(µm.rad)	1.5	1.5	
(kHz)	11.245	11.245	
(10 ²⁹ cm ⁻² .s ⁻¹)	2.5–7?	4.3–12	
(nb ⁻¹)	60 (up to 180?)	110 (up to 300?)	

- Increasing the proton intensity is constrained by Pb stability (moving long range encounters), and arc BPMs capabilities (still uncertain),
- \succ 5 10¹⁰ p/bunch is the maximum reachable in any case,
- Number of bunches per beam is taken from "baseline scenario" for Pb-Pb run in 2015-2016,
- Integrated luminosity assumes same integrated over peak luminosity ratio as in 2013.
- > ALICE will level at $\sim 10^{28}$ and 10^{29} cm⁻²s⁻¹ in Run 2