

Integrated performance of the LHC at 25 ns without and with LINAC4

J. Wenninger

G. Arduini, G. Rumolo, V. Kain, A. Apollonio, A. Gorzawski

25 ns @ SPS

Beam type	Scenario	N _{bunch} [10 ¹¹]	ε* [μ m]	Limit
BCMS	Achieved	1.15	1.39	
BCMS	No upgrade	1.3	1.28	PS/SPS
BCMS+L4	Linac 4	1.3	1.28	PS/SPS
Standard	Achieved	1.2	2.6	
Standard	No upgrade	1.3	2.44	SPS
Standard+L4	Linac 4	1.3	1.65	SPS

- Only standard beam gains with Linac4.
- □ Limits after LS1:
 - o Brightness in the PS (BCMS),
 - o RF in the SPS (all).

See presentation by G. Rumolo

25 ns @ LHC collisions

Beam type	N _{bunch} [10 ¹¹]	ε* [μ m]	k	β* [cm]	½ Xing angle [μrad]
BCMS (+L4)	1.25	1.65	2590	40 / 50	150 / 140
Standard	1.25	2.9	2740	50	190
Standard+L4	1.25	2.0	2740	40 / 50	150 / 140

- \square N_{bunch} and ε^* : values for LHC collisions.
- □ From SPS extraction to LHC collision:
 - Assumed emittance blow up of 15% on top of IBS optimistic wrt 2012 (~ 30% observed),
 - > E-cloud-driven and additional 2012-like blow up under control,
 - Transmission of 96% (~ 2012 values).
- Crossing angles: deduced from an analysis by R. Bruce.
- □ Filling scheme variations may affect k at the level of ~5%.

Pile-up & luminosity limits

- □ A maximum average pile-up of 45 events per crossing is used as upper limit (given as rough guideline for 2015).
 - Based on a visible cross-section of 85 mb @ 6.5 TeV.
 - For simplicity it is assumed that we can also <u>level at a pile-up of 45</u>.
- □ The cooling of the triplet sets a limit to the maximum achievable luminosity of $\sim 1.75 \times 10^{34}$ cm⁻²s⁻¹ ±10-20%.
 - We will have to explore the limit in 2015+.
 - Further reduction of limit due to e-could heat load?
 - A study will be launched to analyze all possible limitations in the triplet (starting with the limiting heat-exchanger).

L. Tavian

@ Evian 2012

Intensity & brightness limitations

- □ The intensity/brightness may be limited by instabilities.
 - o 25 ns up to 1.3E11 ppb just at the edge?
 - Stabilized by head-on beam-beam if needed, but implies more complicated operation.
- Other possible limitations to intensity:
 - heating,
 - > e-cloud,
 - > UFOs.
 - more experience must be collected in 2015+.

UFOs

- Extrapolation from 2012 to 7 TeV: ~100 beam dumps from UFOs
- UFO rate depends on bunch spacing, stronger with 25 ns.
 - But: fast conditioning observed over a few fills in 2012 there is hope!
- We have to expect serious deconditioning after LS1.
- Current status of quench test analysis (LBOC meeting 22.10): we may have extra margin (x 2) at 4 TeV for UFO timescales. To be confirmed.
- Clear picture only after 2015.

E-cloud in 2012

- Scrubbing
 - Demonstrated to be efficient at 450 GeV
 - It lowers e-cloud in dipoles, less evident in quadrupoles (due to a significantly lower threshold SEY)
- Despite 2-beam-50 ns operation in triplet for ~ 2 years (high electron dose), e-cloud still present in triplets.
 - SEY ~1.2-1.3 deduced from heat-load & simulations.
- Significant increase of heat load (~ factor 4) in arcs during ramp.
 - From e-cloud in the dipoles. No change in quadrupoles.
 - Does not decrease over time at flattop (no scrubbing at flattop ?)
 - Underlying mechanism to be understood

G. Rumolo at al

CERN

E-cloud for 2015

- Available cooling power in the arcs (~ 250 W / ½ cell) will possibly limit (initial) operation at 6.5 TeV.
 - Limitations in SAMs will be lifted during LS1.
- Projection of <u>CURRENT</u> situation to 2015: limitation to $\approx \frac{1}{2}$ number of bunches at 25 ns (~1400).
- Idea to enhance scrubbing at 450 GeV to remove e-cloud in the dipoles "completely" with dedicated scrubbing beam.
 - Use <u>doublet</u> beam : 5 20 ns or 2.5 22.5 ns spacing
 - Implications and issues (BI, RF, ADT) under investigation. Report at the next LHC Beam Operation Committee (5th November).

Run length & overheads

- □ A run length of 160 days (high int pp) per year is assumed.
- Periods of reduced luminosity are embedded in our runs. Such periods include:
 - Initial intensity ramp up few weeks. Likely to improve every year up to an incompressible minimum.
 - Ramp up after technical stops: ~ 2 days.
 - >> this reduces the integrated luminosity by 5-10%
- \square β^* leveling setup may be required (and learning curves).
 - o Important to train asap LHCb!
- □ And one should not forget all the special runs like high-beta, LHCf etc that eat up additional few % of the proton runs.

Availability in 2012

- □ The 2012 run can be split into 3 blocks.
 - On a per-physics-fill basis we had:

Stable beams	Faults	Turn-around = the 'rest'
6.1 hours	4.8 hours	5.5 hours

⇒ 36% stable beams fraction / physics efficiency

- ☐ The blue turn-around box also accounts for
 - Test cycles (Q/Q' measurements, FB tests, loss maps, high beta setup...) and lost cycles.
 - o 'Short' tests that were inserted in a standard cycles.
 - o A certain number of pre-cycles.

 - Minimal / best turn-around time ~ 2.2 hours.

This will always be required!

Failure breakdown

- □ Cryo + injectors account for ~1/3 of fault time in 2012.

A. Macpherson

10/30/2013

Physics Efficiency of LHC & LEP

- □ LEP1 reached physics efficiencies > 50% (1992-1994).
 - Simpler machine, long fills.
 - LEP2 had short(er) fills similar to LHC.

■ With one exception, best LHC weeks achieved ~45% physics efficiency. Do it more often...

Availability Modeling - future

- Our current accounting of faults & 'turn-around' is rather coarse.
- □ There is an ongoing effort between AWG (Availability WG) and OP to improve the modeling and information on the different phases.
- Aim to build a tool that combines
 - Cycle information (beam modes, intensity, energy),
 - Post-mortem information
 - Fault information,
 - o Etc

... to provide a better model for faults and for 'the rest'.

CERN

Availability assumption

- What we know:
 - The cycle length increases by ~20 minutes.
- Baseline assumption for performance:
 - Everything remains the same except for cycle length,
 - Assume that in 'Turn-around' there are ~2 cycles → 40 minutes,

Stable beams	Faults	Turn-around = the 'rest'
6.1 hours	4.8 hours	<u>6.2</u> hours

⇒ 35% stable beams fraction

- Many uncertainties ⇔ assumptions optimistic for 2015? No point in speculating too much.
- Baseline for analysis: <u>stable beams efficiency of 35%.</u>

Luminosity model

- □ A simple luminosity model is used for 6.5 TeV, based on 2012 observations during collisions.
- Ingredients:
 - \circ Burn-off (σ = 105 mb),
 - Single beam lifetimes,
 - Emittance growth.

Model dependence of predictions can be > 10%

Cross-checked with:

- Simple analytic approach (simple closed formula) for exponential fill length distribution and constant averaged luminosity lifetime (CERN-ATS-Note-2013-033 PERF).
- Monte-Carlo approach (A. Apollonio).

CERN

Intensity lifetime

- □ 2012 beam intensity lifetimes:

 - Before collision tricky to obtain due to large influence of tails in the squeeze.
 - → assume 60 hours average intensity lifetime without burn-off.

10/30/2013

Emittance growth

- Significant 'effective' emittance growth is observed in collision (from luminosity evolution) at 3.5/4 TeV.
 - Origin of growth not understood. IBS is not sufficient, need an extra 20 h emittance growth time (\rightarrow G. Arduini).
 - Growth was steeper in 2011.
 - 2012 evolution is used to model the luminosity at 6.5 TeV, corrected for radiation damping.

Luminosity lifetimes 2012

- □ 2012 run experience @ 4 TeV:
 - ∘ $\tau \approx$ 6-8 hours first hour,
 - ∘ $\tau \approx$ 12-15 hours after 8 hours.

Reproduced by the model

- □ Luminosity lifetime from burn-off @ 2×10³⁴ cm⁻²s⁻¹ + 6.5 TeV :
 - \circ τ ≈ 12 hours.

10/30/2013

Fill length

- □ Fill lengths in 2011 and 2012 ≈ exponentials.
 - ∘ ~30% of the fills are dumped by OP.

□ An exponential fill length distribution is used for the performance figures quoted in the next slides.

Distributions

□ Effect of the fill length distribution:

 Exponential (truncated @ 20 hours), flat, delta – mean length 6.5 h in all cases.

Distribution	Rel. Int. L
Exponential	1
Flat	~1.1
Delta	~1.2

Depends on lifetime assumptions

- □ Distribution for 2012 is a mixture of:
 - ∘ Exponential faults (~2/3),
 - ∘ Flat + smeared delta from OP dumps (1/3).

+5-10% wrt exponential

10/30/2013

BCMS example

	N _{bunch} [10 ¹¹]	ε* _ι [μm]	k	β* [cm]	½ Xing [μrad]
BCMS (w/wo L4)	1.25	1.65	2590	40	150

CERN

Optimum fill length – BCMS example

□ The 6.5 hours dump time is not too far from the optimum ~ 8-10 h.

Comparison – exponential model

Beam	β* (m)	Leveled L (10 ³⁴ cm ⁻² s ⁻¹)	Peak L (10 ³⁴ cm ⁻² s ⁻¹)	Leveling time (h)
Standard L4	0.4	1.65	2.1	~1.6
BCMS	0.4	1.54	2.2	~2.5
Standard L4	0.5	1.65	1.9	~0.7
BCMS	0.5	1.54	2.0	~1.6
Standard	0.5	1.65	1.2	

- BCMS & standard are very close in performance.
- □ Leveled L ~at the triplet limit, peak lumi BCMS / L4 above limit.
- With 2011 emittance model, values increase ~2%.

Add 5-10% to account for mixed fill length distribution

BCMS example – no leveling

	N _{bunch} [10 ¹¹]	ε* _ι [μ m]	k	β* [cm]	½ Xing [µrad]
BCMS (w/wo L4)	1.25	1.65	2590	40	150

Performance – no leveling

- Modest gain of a few fb⁻¹ due to short leveling time & low(er) initial lifetime.
- BCMS and Standard+L4 have again similar performance, but higher pile-up with BCMS.
- Peak pile-up ~66 for BCMS and $\beta^* = 0.4$ m.

Monte-Carlo Model

- Monte-Carlo model by A. Apollonio, developed for HL-LHC, to model luminosity (simplified), failures and turn-around. Applied to 25 ns operation post-LS1:
 - 30% fills dumped by operation,
 - 6.2 hours of turn-around,
 - Fault time modeled by 4 LogNormal distributions.
- Results are consistent in the range of ~45 fb⁻¹.
- □ The increased impact of UFOs (~100 dumps/year) can lower the integrated luminosity by 15% for the current BLM thresholds.

Summary (1)

- □ The expected integrated luminosity per year for 25 ns is in the range of 45-55 fb⁻¹ for a 2012-like efficiency.
 - ∘ For 5 ½ years of operation until LS3 \rightarrow 250-300 fb⁻¹.
 - Before L4: use BCMS with L4: use standard beam.
 - Unknowns on limitations, emittance, efficiency 10% level effects situation will be clearer end 2015.
 - Peak luminosity close to / above expected triplet limitation !!!!
- With L4 the standard 25 ns beams and the BCMS beams have very similar performance.
 - Bonus for standard 25 ns: lower pile-up (~10%).
 - $_{\circ}$ The emittances that are eventually achieved may make the difference easier for standard (larger $_{\varepsilon}$)?

10/30/2013

Summary (2)

- □ To be sure to reach/exceed 300 fb⁻¹ by LS3 we should aim to improve the average physics efficiency of the LHC from ~35% to at least 40%.
 - Concerted long term effort!
 - Could reduce peak L / pile-up and compensate with efficiency if we get too close to detector damage.
- □ To reach luminosities of 2.5 10³⁴ cm⁻²s⁻¹ as quoted in reference figures β^* needs to be pushed further, emittances lowered etc.

10/30/2013

High-Luminosity LHC and Availability

Fault time distributions in 2012 (4 logn):

A. Apollonio

CERN

SPS efficiency (fixed target)

CÉRN	Sumr			
50 ns, 2.5 um	beta* crossing (cm)	beta* separation (cm)	Half crossing angle (urad)	BB sep (sigma)
mm scaled, no BPM	47	49	129	9.3
mm scaled, BPM	39	39	141	9.3
2 sig retraction, no BPM	42	43	136	9.3
2 sig retraction, BPM	35	33	150	9.3
50 ns, 1.6 um	beta* crossing (cm)	beta* separation (cm)	Half crossing angle (urad)	BB sep (sigma)
mm scaled, no BPM	43	49	108	9.3
mm scaled, BPM	35	39	119	9.3
2 sig retraction, no BPM	38	43	115	9.3
2 sig retraction, BPM	31	33	127	9.3

50 ns, 1.6 um	beta* crossing (cm)	beta* separation (cm)	Half crossing angle (urad)	BB sep (sigma)
mm scaled, no BPM	43	49	108	9.3
mm scaled, BPM	35	39	119	9.3
2 sig retraction, no BPM	38	43	115	9.3
2 sig retraction, BPM	31	33	127	9.3
25 ns, 3.75 um	beta* crossing (cm)	beta* separation (cm)	Half crossing angle (urad)	BB sep (sigma)
mm socied no DDM	60	40	100	10

31	33	127	9.3
beta* crossing (cm)	beta* separation (cm)	Half crossing angle (urad)	BB sep (sigma)
60	49	180	12
52	39	194	12
55	43	189	12
46	33	205	12
			1
		Updates	after MD?
	beta* crossing (cm) 60 52 55	beta* crossing (cm) beta* separation (cm) 60 49 52 39 55 43	beta* crossing (cm) beta* separation (cm) Half crossing angle (urad) 60 49 180 52 39 194 55 43 189 46 33 205

z sig rediaction, bi m	01	00	121	5.0
25 ns, 3.75 um	beta* crossing (cm)	beta* separation (cm)	Half crossing angle (urad)	BB sep (sigma)
mm scaled, no BPM	60	49	180	12
mm scaled, BPM	52	39	194	12
2 sig retraction, no BPM	55	43	189	12
2 sig retraction, BPM	46	33	205	12
				7
			Undatas	often MD2
25 ns, 1.9 um	beta* crossing (cm)	beta* separation (cm)	Updates Half crossing angle (urad)	BB sep (sigma)
mm scaled, no BPM	49			12

	word or occurring (only	bota coparation (onl)	riani di dadinig anigia (anaa)	oop (o.ga)
mm scaled, no BPM	60	49	180	12
mm scaled, BPM	52	39	194	12
2 sig retraction, no BPM	55	43	189	12
2 sig retraction, BPM	46	33	205	12
				1
			Undates	after MD2
25 ns, 1.9 um	beta* crossing (cm)	beta* separation (cm)	Updates Half crossing angle (urad)	BB sep (sigma)
mm scaled, no BPM	49	49	141	12
mm scaled, BPM	42	39	154	12
2 sig retraction, no BPM	45	43	149	12
2 sig retraction, BPM	37	33	163	12

Summary: β*-reach in crossing plane

